 I[image: image11.png]project

.

Project Hierarchy

Business Plan

Created by Peter Joh

Founder of Project Hierarchy

http://www.projecthierarchy.org

peter@projecthierarchy.org

Created on 4/25/2013
Table of Contents

2Table of Contents

3Executive Summary

6Market Analysis

6Industry Description

6Industry Suppliers & Customers

10Competition

10The Database Market – Relational Databases

11The Database Market – NoSQL Databases

13The Database Market – Android

14The Programming Language Industry

20Market Size and Historic Trends

21Future Trends & Strategic Opportunities

255-Year Sales Forecast

26Marketing Plan

26Product Summary

27Sales Goal

27Marketing Strategy

28Pricing Strategy

29Profit Margin

29Promotion

31Marketing Budget

33Development Plan

33Work-Breakdown Summary

35Financial-Needs for Release 1

36Financial Plan

365-Year Income-Projection

36Valuation

37Appendix:

37What are Object-Relational Mapping technologies?

38A Brief Explanation of ACID Databases

39A Simple Explanation of Spring

42A Comparison of Spring & Hierarchy

44What is Spring Data?

45Survey of Query Technologies for NoSQL

Executive Summary

After sixty years of development on modern programming-languages, data, the most important part of our systems, is still a second-class citizen. Developers still need to use libraries or special data-mapping technologies to work with a database. Hierarchy solves this problem by adding a new language for data directly into Java. The database needs to become apart of the programming language itself.

The Opportunity

We need a development tool that makes working with data both easier and perform faster.

Today, when developers work with a database, they need to use either a database library or an Object-Relational Mapping tool (like Hibernate). As good as these tools are, they are still middlemen, which makes working with a database a complex process. Programming a database is prone to issues ranging from problems simply setting up a connection, to difficulties integrating information from many different types of data sources that all use different data-formats (polyglot persistence). For a developer, it’s one of his most important tasks and requires a great deal of thought and effort.

In addition, developers continually need to worry about performance problems relating to the database. As fast as our computers have become, accessing a database is one of the slowest operations our applications do: A query request needs to be sent across the network to the database server, which then grabs the data and sends it back. Much of the time, when a developer needs to fix a performance issue, he typically finds he needs to fix a bottleneck in accessing the database.

What we need is a tool that greatly simplifies working with all types of data while also increasing the performance of accessing it. Hierarchy is that solution.

The Solution

Hierarchy is a new data-language that’s been added directly into Java. For those that are familiar with XML, it’s as if an XML-like language and databases had both been added directly into the Java language. Now, developers can program in Java to create hierarchical data-structures that act like database. From a developer’s perspective, this data structure is the database. These new structures significantly reduce both the complexity and the amount of code when working with data.

However, Hierarchy will not only make working with databases easier, it will also greatly increase the performance of accessing them. These hierarchical data-structures will become data caches. A developer can write his code to access them as is, with no regard to performance tuning, and still immediately gain huge performance improvements over traditional database-access methods. Later, when the system needs to scale to handle greater demands, he can optimize the cache with custom algorithms to increase performance even further – Based on our research, Hierarchy will have up to a 20x response-time improvement over traditional database programming methods (figures from Oracle TimesTen in-memory database caching product).

The Business Model

Software Licenses – Our business model is similar to other, successful, developer-tool companies like MySQL, MongoDB and Redhat. We will offer a free, community edition used to get developers to work with our product when their needs are small, and offer paid version for when their needs grow (fees are paid as an annual subscription):

· Community Edition (Free)
· Standard Edition ($2,000) – The community edition with 24/7 support

· Enterprise Edition ($4,000) – Adds enterprise class features like monitoring, distributed caching, high availability...

· Clustering Edition ($10,000) – This edition will include support for working with clustered and virtualized servers.

· Big Data Extension ($4,000) – Adds features like Hadoop support, enhanced Big-Table DB support, a Big-Data query-manager, a Big-Data batch-processor, Big-Data analysis libraries... "

· Frictionless Hierarchical-Storage ($4,000) – This feature allows hierarchical storage to quickly be added to any persistent matrix.

Consulting Services – Most software companies like IBM, Oracle and MySQL offer consulting services that often account for roughly 30% of their profits. We will also offer support and solution services centered on data programming.

Default Database – We will use Hierarchy to provide a NoSQL database company the service of being the default database for Hierarchy. Hierarchy will use this NoSQL database as its internal, default database-server, which means this database will be installed and used whenever Hierarchy is installed and used. A database company will sign a multi-year contract for this arrangement. This business model follows the one Mozilla has with Google (Google pays Mozilla $300 million per year to be the default search provider on Firefox).

Competitive Advantages

· Fulfills a critical need by all developers – programming with data needs to be easier and perform faster.

· Creates a new market: programming languages with direct database support.

· Addresses two of the main reasons development tools fail:

1. Poor documentation, poor marketing, poor website

We already spent a year creating documentation and marketing:

· We spent five months writing a very easy-to-read, 125 page developer-guide.

 http://www.projecthierarchy.org/index.jsp?PAGE_ID=0&CHILDPAGE_ID=20

· We created a unique website, with its own, distinct look.

 http://www.projecthierarchy.org
· We created an online video that explains Hierarchy in a nutshell and helps promote Hierarchy (see website).

2. Many tools push devs too far from what they know

We chose to add Hierarchy to the Java language so that developers quickly feel comfortable. We built what’s was new off of what’s familiar.

· Hierarchy targets the largest programming market, Java, the world’s most popular programming language.

· Innovates in a market needing new ideas – In terms of new features, the Java platform is falling behind other platforms, and so its developers are looking for new tools to reinvigorate the language.
· Protected IP – one patent application already submitted, another patent on the way.
Current State

We’ve developed the meta-compiler and a basic form of persistence working:

· We spent 8,000 man-hours developing the core compiler. It is a working beta, and has been used in production for the Project Hierarchy and Unconventional Thinking websites.

· We spent 1,400 man-hours on the small-data version of database persistence. It is in alpha and still needs more development.

We also spent over 2,700 man-hours on the documentation, the website, and the four minute tutorial/promotional video previously mentioned.

Target Market and Projections

Our target market is the 9 million Java-developers and the companies that they work for. But, initial acceptance of developer tools in the market place is typically influenced by the developer’s preferences, not those of a business. Therefore, our initial target will be to capture developers.

Revenue Estimates:

	Business Segment
	2014*
	2015*
	2016*
	2017*
	2018*

	Software Licenses
	$0
	$720
	$5,265
	$18,360
	$40,500

	Software Services
	$0
	$2,520
	$4,725
	$9,450
	$18,900

	Database Partnering
	$0
	$0
	$1,000
	$1,000
	$15,000

 * In thousands of dollars
The Deal

· Desired Financing – Our ideal funding would be $3.3 million for two years of development
· Offering – We will be offering 8% ownership for this financing.

· Capitalization – We are offering a 10X CAP

· Use of funds – The investment will be used for two years of operations, sales, and marketing until we become cash flow positive.

· Year 1 – $1.4 million

· Year 2 – $1.9 million

Market Analysis

Overview

We’ll be describing the competitors to Hierarchy and the markets in which they compete (with attention paid to the customers of the products like Hierarchy and what they want and need in their products). The goal is to better understand the nature of this industry and what trends we can take leverage. These trends will influence the development of Hierarchy’s features and the direction of its business strategy, marketing campaign & sales efforts.

Industry Description

NAICS Codes

Hierarchy is a compiler that supports persistence (databases), and more generally, it’s a software product that developers can download / purchase from the web. In addition, we will be providing custom software-solutions built around our products, and supporting them. The NAICS industry-codes that Unconventional Thinking (the company from which Project Hierarchy is based) is classified under are as follows:

· 511210 Software Publisher – Produces and distributes software: design, develop and/or publish.

· 541511 Custom Computer Programming Sources - Writing / modifying / testing / supporting software for a customer.

More specifically:

· Programming-language compilers & development tools

· Software consulting and software support

Industry Suppliers & Customers

Suppliers

Software publishing, in general, has no major suppliers, but it does have one resource that is in short supply, skilled developers. Developers are in high demand, but the number of available developers is very limited. Software development jobs have been at or near the top of the list for best jobs for the past couple of years (http://www.forbes.com/sites/jacquelynsmith/2012/12/06/the-top-jobs-for-2013/). It’s very hard to attract and retain the best developers.

In terms of the needs of Project Hierarchy, our needs are particularly stringent. Because compilers and databases are technically so tough to do, we need very strong developers. However, the need for high-level of expertise can actually be considered a strength. This is because working on such a technically challenging product that is so central to computer-science engineering should be very attractive to developers – building a technology like Hierarchy is exactly the reason many of the top software engineers go into computer-science engineering in the first place.

Customers
We have two customer-groups:

· Developers

· Companies that program with databases and for big data

As the author of this document is an experienced developer, it is his belief that our goal is to first target developers, not companies. Developers have a great influence on the technologies that are used – usage of most programming tools like Hierarchy grow because developers become interested in them, and usually not because project-managers or the business-side of companies have some type of knowledge or interest (for example MySQL, Ruby on Rails, MongoDB…). Therefore, our marketing should target devs first (but, just to keep the big picture in mind, we should still pursue attracting companies to use Hierarchy while growing our developer user-base, because in the end, it’s the companies that have money to pay for software and services, not the developers).

First, we’ll analyze the developer.

Developer Customer-Profile
There are roughly nine-million Java-developers
. Since Hierarchy is a compiler that extends Java, our goal is to capture all nine million of these developers.

Also, it’s important to understand the characteristics of the developer. There is an excellent survey that is conducted by Datanami that captures the demographics of software developers
. Here are some excerpts from an article summarizing their findings:

“The typical developer is a married, middle-aged male in his early forties who has 1 to 3 children. Males have accounted for between 80 and 90 percent of the developer gender mix since we first started reporting on this in 2001. The percent of females in the profession has slightly increased as a trend, but was only at 14% in this survey.

He’s also married. Seventy-one percent said they were married this survey period, with 26% single and only 3% divorced.

North America developers have been getting remarkably younger. This year the median age for developers was 38, a big step down from the median of 45 we saw in 2009. Such a dramatic shift is most likely both a result of older developers retiring or getting displaced during the recession of the last few years combined with an influx of younger developers attracted by new devices, technologies and distribution channels.”

The typical developer is a married man, with a median age of 38. Although, it is important to mention that the target market for Hierarchy is geared towards the younger end of this range, as these developers tend to embrace newer technologies.

“They are well-educated – much more so than the general public. Eighty-eight percent of them have college degrees, about four in ten have Master’s, and another 5% have doctoral degrees. They are smart, detail-oriented and very literal. Logic is paramount and they share a passion for their craft that rises above the desire for more money. “

As one of the authors of this report is also a programmer, from his 16 years of personal experience in the software industry, he can also attest to the well-educated backgrounds of developers. The reason this is important is because the marketing of Hierarchy should take this into account. In fact, in our current marketing (such as the website & web ads), we currently strive to create content that is creative, witty, and surprising.

“Developers seldom start coding because they are driven by monetary goals. Less than 20% report becoming developers more for the money. Instead they are attracted to the development process itself and would not switch careers even for a significant increase in their salaries.”

The fact that developers are not driven by money, but to the act of building is important. This supports this author’s belief that developers are very open-minded to using grass-roots tools that are built from small companies, and even have a bias against ones created by large corporations. The image and marketing of Hierarchy should reflect this attitude. And, even though open-sourcing is often viewed by business people as devaluing a software product, some form of open-sourcing should be considered (possibly a very restrictive license not even allowing new copies to be created without consent). For developer tools, open source is an effective marketing tool, even if it’s effectiveness as a business tool is debatable.

Note that, internally, this has been a very tricky decision, which is why Hierarchy has not been open sourced at this point

Next, we’ll analyze companies that use databases. Specifically, on those that use big data.

Profile of Companies that use Big Data
From a report on Big-Data spending by companies, most companies spend their money on big data to analyze the business-side, with much less going towards back-office functions:

"Regardless of whether they are leaders or laggards, nearly half (44 per cent) of Big Data investments are going to business functions on the revenue side: sales, marketing and R&D/new product development. Much less (24 per cent) is going to back-office functions: IT, finance and HR.
"

The importance of this statistic is that for Hierarchy, when we begin developing Big-Data features; we’ll design these solutions focusing on helping companies analyze their sales, marketing, & product data. Analyzing back-office data should be secondary (unless, there is great demand for back-office analysis but few programming solutions available).

Customer Purchase-Factors

· Price: We will be offering a free version of Hierarchy that’s geared towards smaller data or less performance-intensive needs. The reason is because we want the highest penetration of developer usage, and a free/open source version is an effective tool to gain market share. We will also offer 4 or 5 different, paid versions/extensions for Hierarchy for use by enterprise customers.

· Quality: Hierarchy was an extremely difficult technology to create, implementing highly advanced ideas and unique solutions. At the same time, ease-of-use was always a major consideration in the design of Hierarchy. The result is a product that is both powerful and intuitive. Lastly, good documentation is a key factor in the success of a software tool. We have written a 125 tutorial geared towards ease of learning.

· Client Support: Project Hierarchy will offer superior support for the installation, configuration, programming, and run-time issues of Hierarchy. We will provide access to knowledgeable customer service representatives. In addition, we will offer consulting services to build solutions for customers and / or training on using Hierarchy.

Effectiveness: Use of Hierarchy by developers leads to the developer having to write drastically less code resulting in systems that are much simpler and easier to maintain. In the future, when caching is implemented in Hierarchy, these systems will also be significantly faster than most systems that work with databases.

Competition

Overview

Project Hierarchy will be offering a product that competes in two markets:

· Software-development tools

· Databases

We’ll be surveying the competition from both industries and comparing each product to Hierarchy. Even though Hierarchy is, first, a software development tool, we’ll actually start with the database market as it has a very large amount of revenue.

Also, since the plan for Hierarchy is to integrate it with both relational and NoSQL databases, we'll break down these database competitors even further into these two groups. A relational (or SQL) database is the traditional type of database that developers have been programming with for the last 30 or 40 years. NoSQL is a new style of database whose usage is growing extremely fast and is expected to take a big share out of the database market. Let’s start with relational databases.

The Database Market – Relational Databases

What companies have the greatest share of the database market?
From Gartner’s 2011 DB Market Share Report (created March 2012), we get the following break down:

 RDBMS Share of Revenue for 2011

	DB Company
	Share of Revenue
	2011 Revenue

	Oracle
	48%
	$11.8 Billion

	IBM
	20%
	$4.9 Billion

	Microsoft
	17%
	$4.1 Billion

	SAP / Sybase
	4.6%
	$1.1 Billion

	Teradata
	3.7%
	$880 Million

	Others
	5.8%
	$1.4 Billion

	
	Total:
	$24 Billion

Oracle is clearly the dominant company in the database market. A very important question to research in the future is: Why is Oracle so dominant?
Primary Products – Relational Databases

In the table below are some of the main products of the three major database companies. This is not limited to just database products, but to those related to Hierarchy.

 Databases & Software Development Tools

	DB Company
	DBMS
	Middleware & Application Servers
	Programming Tools

	Oracle
	Oracle 11g

MySQL

Oracle Cloud DB
	Weblogic Server

Fusion Server
	Netbeans

JDeveloper

	IBM
	IBM DB2

SolidDB – in-memory DB that can act as cache to other DB’s

Informix

IBM SmartCloud
	Websphere

IBM Smart Cloud – provides Websphere servers

	Eclipse – IBM originated project

Rational Application Developer for Websphere -

 $24k

Websphere DevTools for Eclipse – free version & purchasable bundle

	Microsoft
	SQL Server 2012

Azure Server DB – a cloud DB
	Internet Information Server

Azure Server – cloud
	Visual Studio – C#, Visual Basic, C, C++

Conclusions

· Clearly, Oracle is the largest SQL database vendor, and integration with their products is very important for Hierarchy.

· The relational database market is hugely profitable. Even with the rise of NoSQL databases, relational databases will be the dominant form of database for many years to come. Hierarchy should try to support relational too, eventhough it is ideally suited for NoSQL (most type of NoSQL databases are hierarchical by nature, which suits Hierarchy very well).

The Database Market – NoSQL Databases

Current state of NoSQL: its biggest problems

· Highly Fragmented – There are multiple, NoSQL databases all competing to be the major NoSQL DB vendor, and no clear leaders (except MongoDB). Also, each database offers its own, unique set of features and because of this, its own strengths and weaknesses. In fact, there are four, main types of NoSQL DB (key-value store, document store, column oriented, and graph), and even within these four types, the feature sets can vary greatly from database to database.
For instance, in document stores, CouchDB is great for mainly read-only situations where few changes will be made to the data. A good example of when to use CouchDB is to store the content of a website that does not change very often. But, on the other hand is MongoDB, which is a good, all-purpose NoSQL DB and performs fine with content that changes regularly. One limitation though with MongoDB is that it does not support ACID, having no support for transactions across multiple documents. Another trade off is that MongoDB is eventually consistent, which means it’s not as good for situations that deal with real-time data, like financial transactions. This “eventually consistency” can be the cause of many headaches for developers because when they program against MongoDB, they sometimes expect data to be updated at by a certain amount of time, but it won’t be ready.
· Querying NoSQL is not standardized – Unlike relational databases with SQL, there is no standard way to query NoSQL databases (not even within any of the four different types of databases). There are some major contenders for query though. For a survey of the different contenders with a breakdown of each of their benefits and problems, see, “Appendix: Survey of Query Technologies for NoSQL.”
· Most NoSQL databases don’t support ACID transactions – For those unfamiliar with the term ACID, please refer to, “A Brief Explanation of ACID Databases,” found in the Appendix.
To quote from a report on NoSQL trends: “Transaction consistency is the biggest obstacle to adoption of NoSQL. Still NoSQL technology fills the gap for many applications where transaction consistency concern is secondary to scalability and performance gains
.”
It seems like developers actually do need ACID transactions, but most NoSQL database do not support them. But, some existing and some new NoSQL databases support ACID. Here is a partial listing:

· FoundationDB
· OrientDB
· Redis
· RavenDB
· Arango (will have support for atomic, collection wide operations in v 1.3)
· Scalaris
Trends

· MongoDB is currently the biggest NoSQL DB, with CouchDB a distance second
.
Conclusions

· Hierarchy must not get locked in to one, NoSQL database vendor, as the market is still evolving. MongoDB is the dominant NoSQL-database and Hierarchy should integrate with them, but should support many other NoSQL DB’s too.

· There are many different types of NoSQL databases (document stores, key-value stores, Big-Table style stores), and Hierarchy should try to support as many as possible.

· How to support all the different querying of NoSQL DB is important to Hierarchy. We will offer a “pass-through” feature that lets devs write queries in the native language for that database.

· Support for NoSQL transactions will probably be important to Hierarchy in the future.

The Database Market – Android

Why is Android important to Hierarchy?

Android is important to Hierarchy because it’s believed that the reason Java has not fallen out of the top spot for programming language popularity is because Android apps are written in Java
. The number of Java developers doing Android development is growing, so this is a very important market to Hierarchy. Therefore, for our product and business strategies, we understand the importance of supporting Android for almost all features developed.

Current state of databases on Android

The most popular database on Android is SQLite. It is a lightweight, relational database that is designed to be used “embedded” in other applications, like internally in a web browser, or in devices like smart phones.

There is also a NoSQL database for Android that is getting more popular too; it’s called Couch Mobile (from the creators of CouchBase). Let’s briefly discuss each one:

· SQLite – is a lightweight, open source database designed to be embedded in other applications and used in devices. Note that it is not a Google project. Since it’s designed to be embedded in other applications, it has the following characteristics

· Not designed for high-volume concurrency – Actually, it does supports multi-process access and is thread safe, but it isn’t designed for high volume, access by multiple processes / threads at the same time.

· Small Footprint – Designed not to use a lot of memory (100 KB) or storage space (~350 KB)

· Fault Tolerant – The environments that it typically runs are very unreliable, so it’s goal is to be able to handle almost any possible hardware or software problem that it could run into:

· Power loss

· Low memory

· Low disk space

Its goal is for the database never to get corrupted, no matter what failure happens to it (For instance, if the database is in the middle of writing data and the device that it’s running on crashes, the database data should still be okay).

· Couch Mobile – Couch Mobile is a mobile, DB solution offered by CouchBase. It is a NoSQL database.

· The database itself it currently called TouchDB

· In the next release, it will be called CouchLite

· There is a version for iOS & Android

· Supports Cloud DB too! – it does so using DB replication. CouchBase has a great replication service that works well not just for backup/fault-tolerance, but for syncing with clients. The copy of a CouchBase db on the phone would just be a replicated copy that needs to be synced with the server.

Competition:

The Programming Language Industry
Having examined the database market above, we will now look at another market in which Hierarchy competes: the programming language and developer-tool market.

What are the most popular programming-languages?

Here’s a chart showing the different popularities of programming languages as ranked by a well known and respected index called the Tiobe Index. It’s not completely accurate but does show major trends.

	Programming Language
	Share

	Java
	18%

	C
	17%

	Objective C
	9.8%

	C++
	8.7%

	C#
	6.7%

	PHP
	5%

	Python
	5%

	Visual Basic
	4.6%

	 …
	

	Ruby
	1.75%

 *Source: The Tiobe index - http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
As you can see, Java is the world’s most-popular programming-language. But, it has been losing ground year by year.

[image: image1.png]Normalized fraction of total hits (%)

275

250

25

200

s

180

128

100

75

50

25

00

TIOBE Programming Community Index

02 2003 2004 2008 2008 007 o8 208 zoin 2011 2012 201
Time.

[— Java — Objective-C — C# — Python Perl
l—c —cer PHP — (Visual) Basic — Ruby

It’s hypothesized though that this downward trend is reversing because of the use of Java on the Android platform. And, one of our main goals on Project Hierarchy is to add even more to this upward momentum by adding some much needed, fresh ideas to the platform.
Competitors to Hierarchy

Overview

Hierarchy has two, nearly direct-competitors. The reason there is no direct competitor is because Hierarchy is a combination of three main technologies:

· A programming language for Hierarchical Data

· A programming language that adds support for database directly into the programming language

· A database caching tool

These two nearly direct-competitors are:

· OPA – an programming language that extends the Javascript programming language

· Spring – a Java framework for something called Inversion of Control (a somewhat trendy technique in software development)

Both of these will be describe below. As for the other, secondary competitors, we won’t go into much depth as we don’t need to know the exact differences between Hierarchy and the secondary competitors. Note that since Hierarchy is the amalgamation of so many ideas, it has a lot of secondary competitors.

We’ll start out with OPA, Hierarchy’s closest competitor.

Programming Languages for Hierarchical Data:

· OPA – This is the most direct competitor to Hierarchy

OPA is a relatively new programming language built on top of Javascript (note, not Java, but Javascript. Javascript is an entirely different language even though they share the Java name). OPA’s initial release was somewhere in 2011 and it is a language geared towards building web applications.

 http://opalang.org/
The main way it is similar to Hierarchy is that it directly supports creating and accessing NoSQL database too.
Two of the key differences (besides the fact that OPA is for Javascript while Hierarchy is for Java) is:

· Hierarchy creates a version of the database data on the client that is updated in real-time, where as OPA seems like it's simply has a data access and data creation language built it. In OPA, the data is not held in a data-structure that's updated in real-time, and more specifically, no DB updates are immediately pushed to the client systems.

· OPA’s focus is on creating a language for web-development. Hierarchy’s focus is on creating a language for data.

Pros of OPA

· It’s designed for a higher-level language, and its syntax is cleaner and simpler
· It went a different path and did a public, open-source release early and has already gained a user base. Hierarchy has delayed its public release to create a bigger, initial buzz with a more fully realized initial product. This may or may not have been a better path.
Pros of Hierarchy

· Java is still the most popular language in the world, with a much higher usage than Javascript (see previous section).
· Having a real-time updatable Matrix makes working with databases nearly as transparent as it can be:
· Developers don’t have to write code to grab the data, and then put it into objects (devs still have to do this in OPA). Devs simply work with the persistent, matrix data as if it were just another data object.
· Devs don’t have to write code to keep re-querying the database to make sure their data is current; matrices will always have the most current data.
· The image of Hierarchy is more ambitious and cutting-edge than OPA’s

· OPA’s focus is to create a language to make web development easier. In the programming world, in the development world, this is called “syntactic sugar,” meaning the new programming language features just make certain common programming tasks easier. Really though, they don’t add any fundamental additions to the language (although, their DB language is pretty nice).
On the other hand, Hierarchy has much bigger goals, and is actual trying to change how programming is done. Specifically, Hierarchy adds a new class of data to Java (the matrix), and then, on top of this, it actually takes this a step further and makes the matrix a representation of the database itself.

Developers love tech, so they want tools that push what is current possible while still being familiar. This balance is what Hierarchy tries to find.

· The marketing of Hierarchy is targets the developer’s mindset better

OPA presents itself as an interesting, open-source web language – web programming is what devs have been doing for nearly two decades and is not very revolutionary. On the hand, Hierarchy presents itself as new way of programming with data, as an attempt to make a contribution to the art and science of software-development.
This can be seen in the difference between the two websites.

· Hierarchy has a well-thought out video, and we are planning to create more that target the developer’s mindset (creativity, intelligence, humor, originality, the unexpected…)
· JSON – Javascript Object Notation – A simplified, XML-like format for Javascript. It’s very popular and is now being supported in other programming languages too. But, in Javascript, JSON is directly supported as an actual part of the language (in most other languages, you work with JSON objects through libraries).
Hierarchy has a very strong resemblance to JSON – both provide actual syntax from a programming-language for Hierarchical data (for JSON, it’s syntax that’s apart of Javascript, while for Hierarchy, it’s syntax that’s apart of Java). But, JSON is a simple format for hierarchical data (which is its strength), while Hierarchy is a full-featured language for hierarchical data. This allows Hierarchy to be used in situations that JSON is not as appropriate for. In fact, one major difference is Hierarchy has schemas, which makes Hierarchy much more useful for libraries.

Another major difference is that Hierarchy’s matrices can become persistent databases, where as JSON objects at this time cannot.

· XML – Extended Markup Language – The most popular language for hierarchical data.
Hierarchy is based on many of the concepts of XML. In fact, a good way of easily understanding what Hierarchy is, is to think of it as if XML had been added directly into Java. However, Hierarchy is more powerful than XML: because hierarchical data is so important to devs, it should directly be apart of the programming language (as we find with Hierarchy’s adding hierarchical data to Java).

Hierarchy is also different from XML in that since hierarchical data is apart of the programming language, this means database persistence can be directly added to the language itself, in the form of the Hierarchy’s persistent matrices.

Java Data Tools:

· JAXB – Java Architecture for XML Binding – Uses Java annotations to map the parts of a Java object to a XML file. Probably the easiest, most popular way of working with XML in Java.
The difference between working with a mapping technology like JAXB and working directly with your hierarchical data is significant. Working directly with hierarchical data changes how you design and code your systems. On top of this, it takes much less effort to work with.

· JAXP – Java Architecture for XML Processing – A Java library for working with XML files. Unlike JAXB, since it’s a programming library, it gives the dev more control of what’s happening, but it takes much more work to use.
· JSON-to-Java conversion libs. There are several. Here are some:
· Jackson JSON Processor

· GSON – Google’s JSON processing lib for Java
· json-lib

· Spring – Spring is an application framework and an Inversion of Control container. Spring in many ways is a direct competitor to Hierarchy. And because Spring is such a direct competitor, in the appendix, we’ve provided a short explanation of how Spring works for those that are unfamiliar with it. Please refer to, “Appendix: A Simple Explanation of Spring,” to learn more.
And, for a fairly detailed comparison of Spring with Hierarchy, refer to the next appendix: “Appendix: A Comparison of Spring & Hierarchy.”

Python Data Tools:

· Zope Object Database (ZODB) – Python has an object-oriented database that’s directly integrated into the language called Zope Object Database (ZODB). ZODB as been around since 1998. It basically has the same principles as Hierarchy’s Frictionless Persistence, but in ZODB, Python objects are stored directly into the DB instead of hierarchical data. And, in ZODB, you still need to interact with the data store, having to manually place the Python objects into it, and use the commit() function to save any of your changes.

The main difference is that ZODB stores data as objects while Hierarchy stores it as hierarchical data. We believe this is an important difference, as hierarchical data is a more natural way to we work with larger sets of information (which is maybe why NoSQL database are taking off, while object-oriented database like ZODB have a relatively small number of applications built with them).

Object-Relational Mapping (ORM) & Object-Document Mapping Tools:

For a quick explanation of what an ORM is, see, “Appendix: What are Object-Relational Mapping technologies?”

· Hibernate & Java Persistence API (JPA) – These are two of the most popular ORM in Java.
· EclipseLink – A Java framework for implementing ORM libs like JPA. It’s based on an older technology called TopLink.
· Spring Data – Spring Data is apart of Spring (see above), and is a framework for programming with any data source in a consistent way. You can use Spring Data with multiple types of data sources, not just relational (but it also supports NoSQL amongst other data sources). And, it actually doesn’t work independently from other data technologies – It needs some lower-level data-access technology for it to work on top of. For instance, when working with relational databases, developers don’t use Spring Data directly, they use it on top of Hibernate or JPA. For more information, see, “Appendix: What is Spring Data?”

How is Hierarchy different from ORM’s? (Note: this difference includes the Object-Document Mapping technologies used for NoSQL Databases too)

Hierarchy is not a mapping technology. In Hierarchy, there is no need to, first, create your database, then second, go to your code and define the classes for a data layer, and, third, then map these classes to the tables using annotations. In Hierarchy, there is only one step: you define your matrix which is a database, and your code instantly has access to it.

Competing Programming-Language Tools for Java

NOTE: Unlike the previous list of competitors, this one is not focused on data technologies, but just on competing Java-related tools.

· Xtend – A higher-level language that’s based on Java (it’s like a “Pythonized
” version of Java in terms of its level of abstraction). Its purpose is to make Java easier to work with, and it compiles directly into Java (just like Hierarchy does).
· It’s created by the Eclipse Foundation.
· Its focus is completely different than Hierarchy, focusing on making the core Java language easier to work with, unlike Hierarchy which is focused on adding new functionality to Java.
· Groovy – A language inspired by Ruby, Python and SmallTalk. It’s on the same level as these two languages in terms of ease of use and programming-language features (they are all, higher-level languages than Java).
· The interesting thing about Groovy is it compiles its code into Java byte code, and runs on the Java’s Virtual Machine (JVM). And, even more than this, Groovy’s byte code is compatible with Java. This means that Groovy can access all existing Java classes and Jars, and can leverage the rich number of available Java libraries.
· One of its most interesting features is that it has direct support for Domain Specific Languages. It’s tough to say how popular these are, if they are just being rarely used, or are the wave of the future. Seems like there is at least decent interest though.
· Kotlin – A relatively new programming language created by the developer-tool company, Intellij. The purpose of this language was to improve on the problems found in Java, such as null reference exceptions and Java’s legacy compatibility problems. Like Groovy, it also compiles into Java byte code and is compatible with Java classes.
· It has many of the same benefits that Groovy has.
Competing Database-Caching tools

As database caching is a distant secondary competitor to Hierarchy, we only list some of the more popular choices for database caching, as these maybe used as models for Hierarchy’s future development of its own caching.

Key-value array – An in-memory, key-value pair array used to store simple values. Both are distributed – meaning their data can be spread across multiple machines, but appear like one, unified cache to the programmer.

· Memcache

· Riak

Object Cache – Used by programmers to serialize the objects that they create.

· MS AppFabric

· Windows Azure Caching

Relational Database Caching – Caches the results from relational databases.

· CSQL Cache

· Open source
· In memory
· Oracle TimesTen

· This is not only a cache, but a full, In-Memory DB and often is just used as an In-memory DB. But, in can also be used in front of an Oracle DB.
· It’s been around since 1996
NoSQL Query Technologies

Another group of secondary competitors are the NoSQL query technologies. To see an overview of these competitors, please refer to the “Appendix: Survey of Query Technologies for NoSQL.”

Market Size and Historic Trends

Historic Performance by NAICS Industry Code
To gauge the past performance of the industries that Hierarchy operates in, we’ll take a look at the historic performance of two industries: Software-Publishing and Computer-Programming Services. Here are two charts taken from data from the US Census Bureau that shows the historic payroll of each industry:

[image: image2.emf]Annual payroll ($1,000)

$40,000,000

$41,000,000

$42,000,000

$43,000,000

$44,000,000

$45,000,000

$46,000,000

$47,000,000

$48,000,000

2007 2008 2009 2010

 Historic US-Payroll for the Software-Publisher Industry

 NAICS Code 511210

[image: image3.emf]Annual payroll ($1,000)

$38,000,000

$40,000,000

$42,000,000

$44,000,000

$46,000,000

$48,000,000

$50,000,000

$52,000,000

2007 2008 2009 2010

 Historic US-Payroll for the Computer-Programming Services Industry

 NAICS Code 541511

As we can see, software-related industries are growing at a very comfortable rate. They are considered one the healthiest industries in the nation. Hierarchy competes in a market whose past performance indicates years of rapid growth still ahead.

Future Trends & Strategic Opportunities

Overview

In the previous section on Historic Performance, we looked at the general, software publishing and computer-programming services industries. But, for future trends, we will focus on more specific components within these industries, namely on the Big Data and Database markets. These are high growth markets in which Hierarchy will find a niche.

Future Trends:

Big Data and NoSQL revenue will increase over the next 4 years

[image: image4.png]Big Data Market Forecast by Component, 2011-2017 ($US billions)

$50.00 1 $47.5
$45.00 Big-Data Services will increase
to $15.3 Billion
$40.00 -
$35.00 -

Big-Data NoSQL & SQL DB

$30.00° 1 . =
Licenses will increase

$25.00
$20.00

$15.00 -

Revenue ($US billions)

$10.00 -
$5.00
$0.00 o)
e Big Data XaaS$ Revenue 5034 5060 5103 $171 $243 s287 $3.19
i Big Data Professional Services Revenue 5243 385 $6.07 $9.24 $1231 $14.06 $1530
i Big Data Application (Analytic and Transactional) Revenue 5048 5093 s177 $324 .04 $6.05 $6.89
L Big Data NoSQL Database Revenue $0.10 50.19 50.39 5073 s1.14 s141 s162
1 Big Data SQL Database Revenue 5072 s102 145 $200 $248 $274 $291
i Big Data Infrastructure Revenue $0.15 5025 50.42 5067 093 108 5119
i Big Data Networking Revenue 5018 028 S0.44 S0.67 $0.89 5102 s
it Big Data Storage Revenue 116 5183 s288 5439 $5.85 $6.68 $7.27
\—— Big Data Compute Revenue s164 245 $3.64 $5.23 $6.70 5750 5806
== Total Big Data Revenue $72 s114 5181 $279 $377 $434 3475
Database as % of Total Big Data Market 11.4% 107% 102% 98% 9.6% 96% 9.5%

Source: © Wikibon Big Data Model 2011-2017

As you can see from the chart, big data revenues will increase. But, the interesting facts to take away are:

	Component of Big-Data Market
	2012
	2017

	NoSQL & SQL DB’s
	$1.2 Billion
	$2.5 Billion

	Big Data Services
	$3.8 Billion
	$15.3 Billion

Revenue from the sale of licenses of SQL & NoSQL database will rise from $1.2 billion in 2012 to $2.5 Billion in 2017 (a two-fold increase). And, revenue from Big-Data services will rise even more from $3.8 Billion in 2012 to $15.3 billion in 2017 (an increase by a factor of 4).
It’s important to plan to capture a share of both these markets. One important note though is that even though the size of the services market is very great, its importance is not as much as it seems. The reason is because, on the one hand, margins in sales of licenses is often much higher than in services (because in services, you have the overhead of needing to pay an employee for his/her time). But on the other hand, companies like IBM, Oracle, and HP make a sizable portion of their income from services. For instance, from IBM’s 2012 financial statement
:

	Business Segment
	Revenue
	Gross margin
	Gross Profit

	Global Technology Services
	$40 billion
	36.6%
	$14 billion

	Global Business Services
	$18 billion
	30%
	$5.4 billion

	Software
	$25 billion
	88.7%
	$22 billion

	Systems & Technology (Hardware)
	$17 billion
	39%
	$6.6 billion

	TOTAL:
	$100 billion
	
	$48 billion

For IBM, their services divisions account for $19.4 billion in profit, which is about 40% of their overall profit. What this means for our strategic planning is, in the end, it is nearly as important to capture the services market as it is to sell licenses. Initially though, to build brand recognition, we may want to focus on selling the software before we address services.

Another important trend we can take away from this data is that NoSQL has a much greater growth potential in big data than SQL databases do:

	Licenses Revenue in

Big Data
	2012
	2017

	NoSQL DB
	 $200 million
	$1,600 million

	SQL DB
	$1,600 million
	$2,900 million

NoSQL Big-Data revenue will increase by a factor of eight in four years. This means NoSQL Big-Data is a high-growth market. High-growth markets have the following characteristics:

· Broad customer acceptance of products

· Rapidly growing customer base, with increasing sales & profitability

· Lower investment risk compared with other types of markets (such has markets that are early in their growth cycle)

· But, typically, high growth markets have lots of competition.

Strategic Opportunities

What conclusions can we draw from these future trends? And, from these conclusions, what opportunities can we take advantage of?

· Big-data Solution: Software & Services – We want to provide both the software for working with big data and also, to perform the actual design, programming, and even the statistical analysis for them.

· Opportunity: Hierarchy can become the gateway to providing big-data solutions – A product like Hierarchy has almost no, direct competitors. Having data directly supported in a programming language makes working with NoSQL data vastly easier. Hierarchy is filling a niche that developers need, which means Project Hierarchy has a great opportunity of becoming the premier solution-provider for creating NoSQL & Big Data systems, supplying them with both software tools and the services.

· NoSQL Databases are undergoing fierce competition – This high growth market will have fierce competition over the next few years. It will be very difficult for one database to stand out and have a competitive edge over all the other products.

· Opportunity: Hierarchy can give a NoSQL database a huge advantage – Hierarchy can be paired with an existing, NoSQL database so that Hierarchy will use this database as its own internal, database server. This means that anytime Hierarchy is installed, this NoSQL database is installed, and anytime a developer uses persistence in Hierarchy, they are by default, using this installed, NoSQL DB. There are 9 million Java developers. How much would it be worth to a database company if they could get a large portion of these devs to install and develop using their database?

· To profit from providing this default-database service, there are many options. A couple of which are:

· Hierarchy can be merged / acquired by a NoSQL database company. The two grow side by side, one supporting the growth of the other.

· A database company can provide royalty payments to be the default DB provider. One instance of this business model is how Google pays Mozilla $300 million a year to be the default search provider on the Firefox browser
.

General Database Trends to Watch

· Android development is already a large piece of the Java development market. In fact, Java would not be the world’s most popular language if it weren’t for Android
. Hierarchy should support the Android platform.

SQL Trends to Watch

· “Relational Database Management Systems (RDBMS) are here to stay. Non-relational database is not a replacement but rather a supplement to RDBMS
.”

The RDBMS market will be huge for years to come. Even though Hierarchy is better geared towards NoSQL, we should still examine the potential for Hierarchy to work with relational database and try to capture market share from this market as well. The main way we can accomplish this is by making Hierarchy the best way to work with relational data too. Otherwise, developers may turn to other solutions.

NoSQL Trends to Watch

· “…We forecast gradual convergence of both [Relational & NoSQL] technologies into hybrid ecosystem and takeover of NoSQL technology leaders by established RDBMS vendors
.”

NoSQL is a quickly-growing product-type that will become important enough to the database market that relational database companies will probably acquire the top NoSQL vendors.

· As mentioned, NoSQL databases are starting to support ACID transactions. This seems to be a need developers have. This means Hierarchy should support transactions.

· There are NoSQL database that combine different types of NoSQL data – For instance, ArangoDB provides the storage of documents (as you would find in a document store like MongoDB), but ArangoDB also allows you to mix in graph data as well (as you would find in Neo4j). This gives devs the ability to create much more sophisticated data, and is a trend to watch.

· NoSQL cloud databases - Another trend in NoSQL databases are the usage of cloud databases. Again, to quote the same report on NoSQL databases:

 “NoSQL and cloud computing: a match made in heaven
”

Our plan is for future versions of Hierarchy to provide excellent support for working with both Relational and NoSQL databases in the cloud.
5-Year Sales Forecast

We took a great deal of effort deciding on a sensible model for our sales forecast. We based as much of our forecasting on real numbers (9 Million Java developers) and reasonable assumptions (can convert roughly 1 out of 100 free users to paid users based on MySQL’s lead-conversion ratio).
	Dev Cycle Year
	Total Annual Revenue

	2013-2014
	$0

	2014-2015
	$3,240,000

	2015-2016
	$10,990,000

	2016-2017
	$28,810,000

	2017-2018
	$74,400,000

One important aspect to note is that by year two, we plan to already be making a comfortable number of sales. The reason we believe this is because Hierarchy is not a seed product, it’s post seed, and well into the early state of development. The metacompiler portion of Hierarchy is already in beta testing.

To view our full our forecasts in Excel (“Hierarchy Sales Forecasts.xls”) with an explanation of the methodology we used, please double click on the icon below.

[image: image5.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\31 Hierarchy Sales Forecasts.xls

Marketing Plan

Product Summary
Before we present the marketing plan, we’ll review the fundamental aspects of: the company, the product (Hierarchy), and our customers. We’ll use this information to crate the rest of the marketing plan. First, let’s take a look at our customers.
The customers of Hierarchy are Java developers and the companies they work for. It’s important to note that even though, in the end it’s the companies that purchase the software, it’s the developers who are the main influence in deciding which dev tools they use. For this reason (and especially, initially in the product life-cycle) we will primarily be focusing on developers as the target customers we’ll try to reach with our marketing.

This means our target market is quite broad, all 9-million Java developers, and eventually when we add Hierarchy to other languages, it will be all developers. The justification for having such a large target-market is that Hierarchy is a new way to work with data, and we predict that over time, Hierarchy will become the standard for how developers work with a database. Therefore, our goal is to convert all developers to using Hierarchy.
The competitive advantage that Hierarchy will offer over traditional data-access methods are:

· When working with databases, Hierarchy will be much easier to use over existing methods, being simpler to use and requiring less code.

· Hierarchy will give a huge performance increase to systems when compared to popular database-access methods. The reason for this increase is Hierarchy’s matrices will be database caches that will keep recently used data in the application’s memory (as opposed to having to request the data over the network).

· Developers will be more drawn to trying Hierarchy because of the fact of how significant an advancement it is – developers are drawn to innovative technologies and tools.
We have no, truly-direct competitors as Hierarchy brings together a many different technologies (programming language for data, database persistence dev-tool, and database caching). But, our two most direct competitors are:

· OPA – This is our closest competitor. Like Hierarchy, it extends an existing programming language, Javascript (which is entirely different from Java even though they share the Java name). OPA also adds in a language for working with databases, but unlike Hierarchy, it does not try to use Hierarchical data structures as representations of the database (or as database caches).

· Java Spring ​– This is a programming framework for Java that uses hierarchical data (XML) to configure the objects in a software system. Its purpose is much different than Hierarchy though, focusing on the architectural technique of Dependency Injection as opposed to Hierarchy’s goal of being a general way of working with any type of data.
We forecast we’ll make $3.2 million is sales at the end of our second year in 2015 (for both software and services). In our third year, we expect sales to increase by a factor of 3.4, to $10.9 million, and then the year after, an increase by a factor of 2.6 to $28.8 million.
In order to increase Hierarchy’s chances of success, we should examine Hierarchy’s major weaknesses. These weaknesses are:
· New programming-languages are difficult to popularize - One of the major reasons why many new languages fail is because they either push devs too far from what they know, or are not innovative enough.
The ways Hierarchy addresses these weaknesses are:
· Hierarchy extends an existing, programming language, Java. Java is taught in most computer-science departments to undergrads, so Hierarchy builds off their existing knowledge.

· Java is the world’s most-popular programming-language, so the market Hierarchy targets is large.

· Most developer tools (and programming languages especially) have poor marketing. It is often unimaginative, not playing to the intelligence and wit of the dev community. Here on Project Hierarchy, we believe great marketing is highly effective, so we’ve already created a clean, attractive website and a tutorial video, and plan to much more.
· Open-source is an effective tool for marketing developer tools – devs have a bias against products that are too corporate. They favor grass-roots tools, and open-source gives us this image.
· Java is a programming-language that is not considered cutting edge any longer – For Hierarchy, this is actually an advantage because this means these 9-million Java developers have wanted new features and innovations for years. Hierarchy meets or exceeds these expectations with new features that are more innovative then even found in a newer language like Ruby.

Sales Goal
At the end of the first year after the initial release of our product, we would like to capture at least 0.8% of Java developers either as free or paid users. More specifically, out of 9 million Java developers, we want 72K of them to download the free version of our software.
Marketing Strategy
To achieve our goal of capturing 72K Java developers in our first year of release, first, we need to better understand the attributes of our product and customer to better create highly targeted marketing for them. The developer market is a professional market with some “consumer-like” characteristics. The reason we believe this is because even though its companies that typically end up buying these tools, it’s the developers’ personal tastes and experience when learning about them that influence whether developers try them or not (and eventually, whether these developers recommend them for use on their company’s projects).

Because there are two classes of customer that we need to target, we have two main thrusts to our marketing efforts:
· A creative marketing campaign that targets developers and plays to their intelligence and wit.

· A trained sales-team that targets devs and companies to convert free users to paid users.
More specifically, we will be performing the following marketing activities:

Marketing Activities:
· Press releases on popular news-aggregator sites that devs often read (devs are heavy internet users). Some sites popular to devs are:

· Slashdot

· Hackernews

· Techcrunch

· Reddit

· Engadget

· Digg

· Press releases on programming magazine websites:

· Dr Dobbs

· Javaworld

· Wired (their enterprise department)
· Promotional videos that play to dev’s intelligence and sense of humor

· Presentations at developer meetup-groups

· Java One

· Android Meetups

· Open source – Hierarchy would make a great open-source project because of its ambition and the fact that it has already developed so much (it’s a working beta). Open sourcing it would probably generate a lot of interest and buzz.
To convert free users to paid users, we will follow the model used by many open-source companies, which is:
When a user downloads the free version of the software, they need to provide their contact information, such as their email address, phone number, and/or physical address. Our sales team will contact these users to see if they need any of the features found in the paid versions. We will also send regular email newsletters that describe our new releases or product-related events to keep the Hierarchy brand fresh in their minds.

When we contact users, we will offer the following products and services:

· Standard license with 24/7 support

· Enterprise and other more advanced licenses that provide versions of the product with features for higher-volume or specialized needs (ex. big data)

· Programming consulting services to help them create custom data-solutions with and without Hierarchy
· Training on how to use Hierarchy most effectively, and how to effectively design systems using architectural concepts developed at Project Hierarchy (ex. N-Dimensional Architecture – see Hierarchy User Guide for more information)
In our first year, out of the target of 72K downloads; we will try to convert at least 1% of these (720) to paid users of our standard license. This standard license will be offered at a promotional discount the first year of the product for $1K and afterwards, for $2K. We sill also try to convert 2% of users to use our support services (without license) and another 0.05% to use our software-consulting services.
Pricing Strategy
Here is the pricing for the different versions of Hierarchy. Note, these are all annual subscriptions:

· Community Edition – Free
· Standard Edition – $2000 – The community edition with 24/7 support

· Enterprise Edition – $4000 – Adds enterprise class features like monitoring, distributed caching, high availability...

· Big Data Extension – $4000 – This package is bought as an extension to the different editions and adds big data features such as: Hadoop support, a Big Data query manager, a Big Data batch processor, Big Data analysis libs...

· Clustering Edition – $10,000 – This edition will include support for working with clustered and virtualized servers. It will include features such as Cache Replication to allow new instance of an application to be spun up on to virtualized servers quickly and Shared Cache to allow virtual servers to share a cache.
This pricing strategy is based on other, successful open-source developer-tool companies (specifically, MySQL). The main factors that influenced our pricing strategy are:

· In the developer-tool market, free/open-source versions are good marketing. The reasons for this are:

· Devs like and support grass-root tools (they have a bias against large corporations)

· An open-source version allows us to capture users when their needs are small, and convert them to using our paid versions when their needs are greater
· Free/open-source allows a dev to try the tool and evaluate whether he wants to invest the time to learn it in depth – All developer tools have a learning curve and typically, the larger the tool, the higher the learning curve. So, tools of Hierarchy’s size typically require a decent investment of time, anywhere from 2 - 40 hours depending on how well the user wants to learn it. Having a free version allows the dev to download and use it as he learns. He also knows that learning this tool will not just be for theoretical usages, because he can use it in a real system without having to have paid for an expensive license. And, in terms of our profiting from this model, in the future, when the amount of requests on his system grows, he can migrate his system to using a paid version.
· A developer tool like Hierarchy has both the characteristics of an accessory tool that they purchase to help them perform their work, and a form of installation, which is a medium/long term purchase they need for their infrastructure and with which they must work for several years.
· The choice of dev-tool used in a system is often very important, as hundreds of thousands of lines of code will be built using it. Therefore, it is usually difficult to swap out an insufficient library after the system reaches production. Most companies understand an important dev-tool is a key part of their infrastructure, and are often willing to pay well for it.
· This is why we chose to base our pricing off of MySQL’s pricing model, the numbers show an understanding in the value of such types of software to a business.

Profit Margin
Generally speaking, the profit margins on successful software are very high. IBM’s gross margin on their software division was 89% for 2011. Of course, Project Hierarchy is not IBM, but in a few years once we are near the end or past the expansion phase of our company and not spending as much on R&D and marketing, we expect to have a large gross margin. The assumption here though is we’ll have a very healthy sales volume (see “Hierarchy Sales Forecast.xls,” in the Market Analysis section for our predictions on our sales).
Promotion

Before we can discuss what promotion we will perform, we need to understand our market, product, and the image we should present that would best sell our product. We’ll discuss this first.
What are the characteristics of our target market?
Let’s summarizes some key characteristics of Developers as taken from our chapter on Market Analysis:

· Average age is 38 – But, Hierarchy will target developers on the younger range of this spectrum, as they tend to be the early adopters of new technologies.

· Well educated, 85% have college degrees – Our marketing should be intelligent and clever.

· Passion for their craft above money – Developers have a bias against big, business-like companies.
Based on these characteristics, what image of our company and our software do we want to present?
· The image we want to present is that our company is filled with a small group of intelligent, creative engineers taking risks to create truly innovative products.
· For most of the developer tools, their advertising is too impersonal. For instance, we should show promotions that let you meet the devs that work on Hierarchy (Google does a great job of this in their promotions).
· Promotions should be creative, witty, and surprising. Devs are a sophisticated audience, and Project Hierarchy is a company of devs; we should communicate with them just like how devs talk to other devs – full of the intelligent, witty banter that devs speak with all the time.
· May want to create a bit of mythology behind one or two people – Have one or two people become central figures for Hierarchy.
· That we are not apart of the establishment, presenting Hierarchy as a grass-roots tool instead of one created by a corporation.

· Of course, developers are very critical about software, so even though Hierarchy should be grass roots, we still require Hierarchy be a well-crafted, polished product.

· Always do good

· Google doesn’t do everything right (most of their new products have been half-baked and poorly driven forward), but their company mantra of “Don’t do evil” seems effective. It may hurt their short-term sales as they favor free products (Android vs. iOS, Google Drive, YouTube vs. Vimeo). But, this may be why Google is not perceived as a large, slow moving corporation. It still has that startup feel even after all these years. For instance, they have a much more innovative image than Microsoft. In fact, it’s probably a reasonable argument to make that Windows 8 is as or more innovative than Google’s OS (Chromium), and that Windows Phone 8 is more innovative than Android (except in the areas of speech recognition), but Google’s products are still have the perception of being more cutting edge. Keeping an anti-corporate image is vital these days.
Now that we’ve discussed the characteristics of our market, our company, and our image, let’s discuss what marketing activities we’ll perform that will use these characteristics to best sell Hierarchy to our customers.

How will we reach devs?

We will perform the marketing activities as specified in the previous section, Marketing Strategy, please refer to this section for more information.
How will we get devs to use our product?

On top of good marketing, the free/open-source version will makes it easier for devs to try and actually use Hierarchy in small-needs situations.

What message will we use to reach devs?

Our main message is:
 “Do you want to change Java?”
This message conveys the following idea:
It connects with a sentiment many devs share that they wish they could do more to innovate. Most devs spent thousands of hours learning about and honing their techniques in software development. They’ve become skilled craftsmen with a love for technology. But, in their jobs, they work on a small piece of a larger system and while their jobs are difficult and require a lot of work, all this effort and problem solving goes towards making some small widget perform just a little bit better or creating some amazing backend component that no one ever sees and management doesn’t recognize as valuable. The main point is: developers yearn to do more, to create something that truly advances what we can do with technology. Hierarchy and this message tap into this idea.

How will we get devs/companies to buy the paid versions?

· Through a website that clearly lays out the product options
· Make it easy for customers to see what paid options are available and why the paid version is beneficial to them.

· A trained sales team that will uses the high-quality leads collected from downloading the free version of our software
· When users download the software, they must supply a valid email address and possibly other contact info. We will have a team of skilled sales-people contacting these free users, converting them to paid users.
Marketing Budget
Here are the guidelines on where we’ll spend money on marketing:
 Marketing Budget Guidelines
· Marketing is very important and too often neglected by dev tool companies – At Project Hierarchy, right after the product itself, creating great marketing is of next importance in our development efforts. We will put in the necessary time and effort to best present Hierarchy to devs.

· Only start heavily marketing the product when it is ready – Too many software products fail because they are released half baked. For instance, we can see this if we look at many of Google’s product releases: Google Buzz, Google TV, Google Waves, Google Video, Google’s Nexus Q (a streaming media device in the shape of a sphere)… The list of failed products goes on and on.

· If you heavily hype a product but it fails to deliver on expectations, then you’re just going to make customers either weary or (if they buy it) angry. Instead, let’s be like the iPhone, we’ll only market and release the product when they’re both ready.
· Start creating your marketing early, not once the product is done – A good marketing campaign takes time. Many companies start creating their campaigns a year or more in advance of release. We need to have our marketing ready when the product is done.
· Especially these days with the internet, good marketing doesn’t need to be expensive.
· Use your money wisely by spending money or marketing that will be seen by your target customers, not by expensive, mass-marketing efforts.
To create the actual marketing budget, we used a tasked based approach of estimating. First, we need to break down what marketing tasks need to be performed.
 Marketing Work-Breakdown
· Create marketing strategy

· Brainstorm marketing ideas for videos and press releases

· Generate mockups / story boards

· Choose which ideas to implement

· Estimate time / money needed to create each idea
· Create marketing release schedule timed with product releases events

· Implement ideas

· Videos, articles, blog, presentations, social media

· Review and revise all the marketing products that have been created

· Release marketing according to schedule

· Post-Release Marketing-Related Tasks
· Monitor and measure effect of marketing on sales

· Manage customer response and company image
The next task is to create the actual marketing budget itself. A detailed marketing budget will be created closer to receipt of funding! But, our initial estimate is that for the first year of development, we’ll have a half-time marketing person with a budget of $30k. We’ll plan on targeting the second year release as our major marketing event as our product may be more ready for a larger audience at that time. During this second year, we’ll probably spend upwards of $400k on marketing efforts (possibly more).
 Development Plan
Work-Breakdown Summary
This section is a summary the information in our development plan document – This document is too detailed for a business plan, but we have included it in this document. To view our full development-plan in Excel (“Hierarchy Development Plan – Work Breakdown.xls”), please double click on the icon below.

[image: image6.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\20 Hierarchy Development Plan - Work Breakdown - v02.xls

This summary provides the overall, estimated amount of time and number of workers necessary to develop release 1 of Hierarchy. And this first table summarizes the amount of developer time necessary to create this release. It is broken down into the main types of work: the work on the metacompiler itself, work dealing with persistence, and work on secondary tools.

	Developer-Time Summary
	
	

	Component
	Developer Time

	Metacompiler
	6.2
	months

	Database Persistence: Programmatic Persistence
	3.8
	months

	Database Persistence: NoSQL Persistence
	32.0
	months

	Secondary Tools: Eclipse support
	11.4
	months

	Secondary Tools: Netbeans support
	4.1
	months

	TOTAL
	57.5
	months

 This second table summarizes the development schedule, and our employee needs.
	Development-Plan Summary:

	Development-Time Summary

	Release one is broken into two iterations over a 1 year time period:

 o Iteration 1: Main Development (8 months)
 The bulk of the work takes place here.

 o Iteration 2: Beta Test (4 months)
 We begin Beta testing, BUT, in our experience, there is still a
 great deal of polish work and missing features to add,
 so expect nearly as intense a programming schedule for this
 iteration.

	Summary of Team Needs

	For release 1, we'll need:
 o 7 developers
 o 1 test engineer
 o 1 CEO (Peter Joh)
 o 1 CMO/COO
 Total: 10 people

We'll also have a part-time accountant and part-time lawyer, and may need a part-time recruiter.

	Development-Team Needs

	We'll need in total 7 developers plus 1 test engineer for release 1.

This number is determined by taking the total number of work, 57 months, and dividing this by the length of iteration 1 in our development schedule, 8 months.

	We can further break this down by the type of developers we need:

	 o Compiler developer – 1

	 o DB Persistence developers – 4

	 o Eclipse & Netbeans developers – 2

	Business-Development Team-Needs

	We need: 2 Business Dev people:
 o CEO
 This will be the founder, Peter Joh, who will actually do both
 programming & business work.
 o COO/CMO
 We need a talented business person to determine the
 direction Hierarchy will take to direct what features and
 segments of the market we should pursue based on
 market trends. This business person will also
 craft our marketing campaign for release 1: We believe greatly in
 great marketing, and we want to start creating an
 effective campaign early.

Financial-Needs for Release 1

This calculation for our financial needs is based on the amount of work need to develop release 1, which was just mentioned in the previous section (10 employees for 1 year of work). From the estimates on the amount of developers we need, we can estimate the amount of the expenses generated.

For Release 1 (which is one year of development by 7 developers, 1 test engineer and 2 business people), the estimated cost will be:

	Expense
	Amount

	Average Salary
	$80,000

	"Employee Salary Multiplier" to cover taxes, benefits, and equipment
	1.5

	Number of Employees
	10

	Total Cost for Employees
	$1,200,000

	
	

	Marketing Budget
	$30,000

	Business Development Budget
	$30,000

	Total Business Expenses
	$60,000

	
	

	Rent for 1 year
	$50,000

	Part-time accountant
	$20,000

	Legal
	$50,000

	Miscellaneous
	$20,000

	Total Other Expenses
	$140,000

	
	

	Total Expenses
	$1,400,000

Financial Plan

5-Year Income-Projection

Our 5-Year Income Projection is built off of the sales-forecast document seen previously (if you haven’t already done so, you may want to look over this document first).

One important note when viewing this document is that the critical, first-year expenses have a high degree of accuracy compared to expenses figures found in most income-projections. The reason is because in our development plan, we created a detailed work-breakdown. This allowed us to generate more accurate estimates for the number of workers we’d need and the amount we’d have to pay them.
The 5-Year Income-Project document is an Excel spreadsheet that we have included. To view our pro-forma forecasts in Excel (“Hierarchy 5-Year Income Projection.xls”), please double click on the icon below.

[image: image7.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\32 Hierarchy 5-Year Income Projection - v02.xls

Valuation

Here’s the models we used to value our company. We’re using a risk-adjusted discount-rate to determine the valuation (For more information, please do a Google search for “risk-adjusted discount rates”). We provide you with a valuation for the standard case, the best case, and the worst case (calculated using the different figures from the 5-Year Income Projection). Here’s a summary of our valuations:
For a $3.3 million investment for 2 years of development at which time, we plan to be profitable, your ownership

scenarios are:
	Scenario
	Discount Rate
	WACC
	5-Year Valuation
	Investor Equity

	Standard Case
	21%
	20%
	$41,011,380
	8.047%

	Best Case
	42%
	20%
	$83,405,215
	3.957%

	Worst Case
	15%
	20%
	$8,180,463
	40.340%

 To view the different models in Excel, please double-click on the following icons:

	Standard Case
	Best Case
	Worst Case

	
[image: image8.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\Valuation forecasts\Hierarchy Valuation - Standard Case.xls

	
[image: image9.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\Valuation forecasts\Hierarchy Valuation - Best Case.xls

	
[image: image10.emf]C:\Share\Google Drive\Hierarchy\00 Hierarchy Main Documents\Valuation forecasts\Hierarchy Valuation - Worst Case.xls

Appendix:
What are Object-Relational Mapping technologies?

First, how do programmers work with database data?

In their systems, devs often create domain objects (also known as model objects) that are object representations of what is in the database. So, for example, in our database, we could have a customer table with a few different columns:

Customer Table
 Columns list:

· firstName

· lastName

· address…

Then, in our Java code, we can create an object that represents the customer info from this database (in Java, we define the template for an object is a class definition):

public class Customer {

 String firstName;

 String lastName;

 String address;

}

So, what an Object-Relational Mapping tool (like Hibernate) does is whenever customer data is pulled from the database into our Java program, the ORM takes the data and automatically wraps it into these Customer objects. It’s automating the creation of domain objects so that the programmer doesn’t have to code this automation himself.

And, the reason this is called ‘Object-Relational Mapping’ is because conceptually, what these tools are doing are mapping the tables in our relational databases to objects in our systems.

Appendix:

A Brief Explanation of ACID Databases
ACID is an acronym to that is used to describe database that have four characteristics: Atomic, Consistent, Isolated, and Durable. We won’t go into too much detail about what each term means (as this maybe more information than you might need), but we’ll describe more generally why it’s important to our applications. The main reason it’s important is because most of our business applications have multiple processes that all use and modify a database at the same time and the work they do needs to be coordinated.

You can think of application like a team of people at an office. This team has multiple workers doing their tasks, all at the same time. For instance, let’s say Sally is a product manager for a new line of shampoo, and she works on higher-level strategy. Janie is a financial analyst working with Sally, and she does all the number crunching for the launch of the shampoo. Sally doesn’t sit around waiting for Janie to do finish her tasks to do her own; they do their work in parallel.
But, here’s where the real problem is, let’s say they both need to work on the “Product Strategy” document for their shampoo, and on the same section, the Financial Breakdown. Let’s also say that this document is stored on a server where they both save their changes to. Now, they both shouldn’t work on this at the same time, because they can overwrite each other’s changes!

So, for instance, they both start working on the document in the morning when the sections are exactly the same. Janie works really hard and spends half the day completely changing the entire section, and around lunch time, she decides she’s done, so she saves the doc to the server. But, Sally isn’t aware of what Janie is doing, and she spends her day casually making only a few, minor changes. Then, at the end of the day, she saves her version of the document back to the server. She has now blasted away Sally’s version and Sally’s changes are completely lost!

If we go back to talking about applications, this, working-in-parallel, strategy is what an application does when it works with a database. Internally, it also has multiple worker processes all trying to make changes to the same sections in the database! And so, this same problem can occur where one worker process blasts the changes of another process without meaning too. This is a big deal, especially if the information is important and every change is critical (like financial transactions – You don’t want to loose a $10k order!).

But, if a database supports ACID, the worker processes can use database transactions to coordinate when they have access to the same sections. With transactions, they aren’t allowed to work on these sections at the same time, only one worker process can make its changes before the next one does. Transactions make sure their changes don’t squash one another.

The main concept to take away from this is: the work done by multiple processes needs to be coordinated when working on a shared resource (like a database).

But, one last note, most NoSQL databases do not support these ACID transactions! (But most relational databases do) Most NoSQL databases have no way of coordinating changes done by multiple worker processes! This wasn’t as big a deal when NoSQL first came out, as it was used in situations where the workers processes only read data from the database, and didn’t do any writing (for instance, data analytics). But, more and more, devs want to use NoSQL databases in situations where they write as well as read data. And so, some new NoSQL-databases are starting to offer support for ACID transactions.

Appendix:

A Simple Explanation of Spring

Spring is application framework for Java. An application framework is similar to a programming library: they both provide a set of services that programmers can use to build their applications from (for instance, services like a component to read Word docs or one for creating 3D graphics). But frameworks are different from libraries in that they also typically provide a structuring for the different parts of the system that the system can use too. For instance, a very popular structure is called Model-View-Controller. This structure is used to separate the code we create for the user interface from the code that’s used to collect the data. Three, popular frameworks in Java that do this separation are Java Enterprise Edition (JEE), Struts and Java Server Faces. Another popular one in Ruby is the Rails framework.

In Spring, the structure that this application framework provides is called Inversion of Control.

To give a little background info, Inversion of Control is what devs call a design pattern – When designing an application; a design pattern is a commonly-used design-arrangement for different parts of the system. The reason devs use them is because they tend to have benefits when devs have to do any additional work on the system. For example, some design patterns make systems more understandable (like the Composition design pattern) and others make them more flexible to future changes (like our Inversion of Control pattern).

So, the purpose Inversion-of-Control design pattern is to make the internals of a system less-tightly integrated, allowing devs to swap out components with different versions when needed. For instance, let’s say we have a spell-checker component in our system, and it uses a dictionary component to do its spell checking. Typically, components are “wired” together directly. So for our spell-checker component, this means that in order to get it a copy of the dictionary component for it to use, the spell-checker would actually have to directly create and configure one itself!

The problem with this is in the future, if we find that the dictionary component we used is not very good or a better one comes along, and we want to swap it out, then we run into problems. A developer would have to go directly into the code everywhere it’s used and make the change. This can get very messy, because what if our system uses this dictionary in dozens of different places? We would have to find each one and swap out the dictionary with the new one as well as redo the setup for each of these new dictionaries. And, for large systems maintained by dozens of developers, making a change like this can be a nightmare.

In software design, the technical term for this tight relationship between two components is called coupling. In certain parts of a system, coupling is actually desirable, but for other parts, we want to reduce it as much as possible. For these situations, what we need is a way or a technology that helps us reduce it.

So, to return to the Spring technology, the main purpose of Spring is to allow devs to glue components together with little coupling. More specifically, it provides a way for devs to use Inversion of Control to glue these components together with settings placed inside XML files, or using Java Annotations with JavaConfig to ‘inject’ these settings into our components. It’s easier to show how this works than to explain it.

Here’s a simple version of our Dictionary component. Let’s wire this component together using Spring and an XML file. Note that this dictionary doesn’t do anything except print out its language setting:

package org.projecthierarchy.sample;

public class Dictionary {

private String language;

public void setLanguage(String language) {

this.language = language;

}

public void printLanguage() {

System.out.println("This dictionary’s language is: " + language);

}

}

Dictionary.java

Here’s the XML file that is used for Inversion of Control. This file is used by Spring to configure the Dictionary component, setting its language to English.

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="dictionaryBean" class=" org.projecthierarchy.sample.Dictionary ">

<property name="language" value="English" />

</bean>

</beans>

SpringBeans.xml

Here’s the SpellChecker component that has the Dictionary component injected into it. You can see where this “injection” takes place. It’s the code that’s in bold.

package org.projectprojecthierarchy.sample;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class SpellChecker {

public static void main(String[] args) {

ApplicationContext context = new ClassPathXmlApplicationContext(

"SpringBeans.xml");

Dictionary dictionary = (Dictionary)context.getBean("dictionaryBean");

dictionary.printLanguage();

}

}

SpellChecker.Java

The reason this is called Dependency Injection is because now, in the SpellChecker.java file, if we want to change which dictionary the system uses, instead of having to change this main, code file, we can simply go to the XML we used to “inject” the dictionary (SpringBeans.xml). Without Spring, normally, we’d have to directly edit the imported libraries of the SpellChecker.java’s to use this new dictionary, and then also change the settings that are passed in. This may not seem like a large problem, but imagine if we were creating a word processor, where the dictionary is being used 100 different places. To change the dictionary for this, large application would require a great deal of skill and time.

Appendix:
A Comparison of Spring & Hierarchy
What does Spring do at a high-level?
· Spring is a framework for Inversion of Control. Spring uses XML to wire components together (Spring can also use JavaConfig and Java Annotations to do this wiring too, an increasingly more popular method).
How are Spring and Hierarchy the same?

· Both pull the settings out for the components of a system and place them into configuration files. And, both of these configuration files store their data hierarchically (for Hierarchy, it stores them in Matrices while Spring stores them in XML).

· The result of this collecting of settings is that for both these architectures, most of the systems settings are now contained in one place, in Matrices or, for Spring, in XML files. Developers need only look in one place to make many of the changes necessary for their systems.

How are the two different? To figure out how they are different, we’ll break down the differences by the various qualities of the two technologies.

· As an Architectural Framework – Even though these two seem to do similar things to systems in similar ways, they’re conceptually very different and thus have a different result on system architectures. The main purpose of Spring is to be an Inversion of Control container, so it’s really focused on taking the configuration of important objects and placing them into the configuration files! The focus of Hierarchy is not Inversion of Control. In fact, in its current state, it doesn’t even provide Inversion of Control. Its architecture is called “N-Dimensional Architecture (NDA),” and is not interested in configuring objects. NDA focuses on lifting out just the settings of the system and moving them into a higher architectural-level. Because of this, NDA becomes much more of an architecture centered on automating components in a system, so that different behaviors are configurable solely (or mostly) by changing the settings collected in the matrices.

For more information on “N-Dimensional Architecture,” please refer to the Hierarchy Developer Guide.

Note that devs also do this type of automation in Spring, but since its configuration files organize systems only by object, it doesn’t match the degree of automation possible in NDA. This is because in Matrices, you can organize the settings into related groups, regardless of what objects they belong to, which is much more natural to automation. For instance, you can capture all the events for an online calendar, creating a matrix just for the events. Then, you can display these events not only in the calendar, but on the homepage too.

<Events>

<event>

<title>Puppy Bingo Night!</title>

<date>May 14th</date>

<desc>It’s bingo with a twist! Our prizes are more than just money, they’re cute, warm puppies! Yay!</desc>

</event>

<event>

<title>Dishwasher Disco!</title>

<date>May 28th</date>

<desc>Doing your dishes is usually a chore, but not while your dancing! Bring your dishes to this highly unique and oddly-inspiring fusion-event – promises to be very entertaining! (and very messy :) </desc>

</event>

</Events>

You can do something similar in Spring, but it’s a bit more cumbersome, and because configuration in Spring is organized around objects, it can get messy when you try logically grouping a collection of the settings of a variety objects that are separated throughout the system.

One important note is it seems like Spring is moving away from using XML files to configure components, and moving towards using Java Annotations with JavaConfig. A possible reason for this trend is because Spring is more focused on Inversion of Control than on collecting settings together (like NDA and Hierarchy are). Inversion of Control seems to be easier and more understandable done with this newer way.

· Inversion of Control – As we have talked about, Spring is used for Inversion of Control (or as it’s known by its other name, Dependency Injection). Hierarchy doesn’t support Dependency Injection for the implementation of objects at this time. It does support the configuration of objects, but not the way Spring and other Dependency Injection frameworks do. Dependency Injection is not a focus of Hierarchy (this may or may not change in the future).

· Databases Support – Spring supports databases through Spring Data. For more information, see the section below on “Spring Data,” under Object-Relational Mapping Tools.
Appendix:

What is Spring Data?

Spring Data is a framework for programming with any data source in a consistent way. You can use Spring Data with multiple types of data sources, not just relational but also NoSQL. And, it actually doesn’t work independently of other data technologies – It needs some lower-level data-access technology that it works on top of. For instance, when working with relational databases, you don’t use Spring Data directly; you use it on top of Hibernate or JPA.

How does Spring Data work? First, to understand how Spring Data works, you need to know what an ORM and domain objects are. If you are unfamiliar with ORM’s, see “Appendix: What are Object-Relational Mapping technologies?” With this understanding, what Spring Data is doing is making it even easier to create this Object-Relational Mappings. For instance, if we’re using JPA with Spring Data, once you define a domain object with its JPA mappings, you’d define a Repository interface for it and add “findBy()” method signatures. These findBy() method signatures will then be used by Spring to automatically generate the actual the SQL code to pull out the specific data needed by this query. Spring Data generates all this code for you.

And, this is very similar to how Spring Data works with NoSQL databases too. It depends on the specific database (each has its own implementation in Spring Data), but with NoSQL databases, Spring Data is also creating the mapping too (because there is no technology like Hibernate to do it). The way it does this is it examines what domain objects the developer has created (for instance, a Customer class and a Product class), then based on these it generates the code for the necessary data objects for he developer to program with.

Think of Spring Data in two ways:

1. A consistent way to work with data (using domain objects mapped to data).

2. Based on the domain objects you create, it generates code to make it easy to query, create, and modify the associated data in the database (as well as other features of working with data).

Appendix:
Survey of Query Technologies for NoSQL
Map-Reduce Related Query-Technologies

· MapReduce – Created in 2002. Was a revolution for querying NoSQL and Big Data because it allowed developers to query the highly distributed and large datasets that were typically found in NoSQL DB’s. Allowed queries to be done against data separated across many servers (sharding) and to be done in parallel.
· Pros:

· No knowledge of parallelism needed to create queries.
· Cons:
· They needed to be created by a programmer, unlike SQL which could be created by people with little development knowledge as well.
· Because you work with the raw data, there is no direct support for permissions on data, nor does it directly support auditing (meaning being able to keep track of who queried what and when. It can be done in MapReduce, but the programmer has to actually add it to his/her query. The database itself can’t do it).
· Not very compact in its code. SQL queries are by comparison much more compact.
· Sawzall – Created in 2005. Overcomes the disadvantages of MapReduce. Instead of using a regular programming-language to create your MapReduce queries, you use the SZL scripting language. You create these scripts for just the ‘Map’ part of MapReduce, and use pre-defined reducers for the reducer part.
· Pros:

· Because not working directly with data, but working through the SZL language, can now support permissions on data access, and also auditing.
· Cons:

· The syntax is awkward.
· Can’t create custom reducers, which is actually something that is often needed.
· No ‘chaining’ of queries directly supported, which is often needed because you can’t create custom reducers.
· Does not perform as well as MapReduce.
· Dremel – Created in 2006 and released by Google as BigQuery in 2011. This language is a column-oriented language, in that it stores info in protocol-buffers as column of data (as opposed to rows like relational database). Because of this column-oriented organization, queries are very fast, and ideal for big data queries. It uses an SQL-like language.
· Pros:

· It uses an SQL like language so that now, even non-devs can create them.

· Very fast

· Cons:

· Need to duplicate data from your stores, copying them into a column-oriented buffer (Column IO).

· Can only work with data that can be copied into Column IO. This limits the types of data that you can work with.

· This actually excludes them from very big data, because you have to do all this copying.

· Also, it has a size limit, and queries often fall apart if data is too big.

· Query languages that uses SQL on top of MapReduce

· Tenzing – Created in 2011

· SQL MR – Created in 2012. It tries to fix some of the problems of Dremel. It builds Dremel SQL on top of Flume Java, which sits a top of MapReduce.

· Pros
· Has all the pros of Dremel, but unlike Dremel, in can work with any type of data.

· Again, it’s MapReduce for the masses, even non devs can create them.

· Cons

· Hard to debug – because of all the layers of technologies (Dremel SQL, Flume Java, Map Reduce), when a problem occurs, it’s difficult to figure out what is going wrong with a query.

· No interactivity (you can’t easily work with the query engine to build your query).

General Notes about Using SQL with NoSQL Data

· SQL is not designed for tree data, so, for instance, the SQL-based, Map-Reduce languages often have to add syntax to allow SQL to return tree data.

· No standard way to get meta-data about the databases – Each NoSQL data store has a different way it stores its meta-data. Need a standard way to discover the meta-data and also to retrieve it.

Other Interesting, Query Technologies

QueryDSL – This is a ‘domain-specific language’ for querying in Java. For those that are familiar with Microsoft’s LINQ, you can think of it as LINQ for Java. Very powerful and is something that should be considered for the design of query in Hierarchy, or even just to directly support it.

� As claimed by Oracle in 2010 - � HYPERLINK "http://oracle.com.edgesuite.net/timeline/java/" ��http://oracle.com.edgesuite.net/timeline/java/�

� “Demographics Shed Light on The Programmer Personality,” February 14th, 2013 - � HYPERLINK "http://www.datanami.com/datanami/2013-02-14/demographics_shed_light_on_the_programmer_personality.html" ��http://www.datanami.com/datanami/2013-02-14/demographics_shed_light_on_the_programmer_personality.html�

� http://articles.timesofindia.indiatimes.com/2013-03-22/strategy/37935953_1_big-data-business-units-cent

� “NoSQL Market Forecast 2013-2018” - � HYPERLINK "http://www.marketresearchmedia.com/?p=568" ��http://www.marketresearchmedia.com/?p=568�

� � HYPERLINK "http://blog.jelastic.com/2013/04/02/software-stacks-market-share-march-2013/" ��http://blog.jelastic.com/2013/04/02/software-stacks-market-share-march-2013/�

� http://www.infoworld.com/d/application-development/java-remains-most-popular-language-thanks-android-178469-0

� By “Pythonized,” we mean that the Xtend language is making Java like the Python programming-language – easier to use with simpler syntax and allowing for what developers call “dynamic typing.”

� � HYPERLINK "http://www.ibm.com/annualreport/2012/bin/assets/2012_ibm_financials.pdf" ��http://www.ibm.com/annualreport/2012/bin/assets/2012_ibm_financials.pdf�

� � HYPERLINK "http://en.wikipedia.org/wiki/Mozilla_Foundation#Financing" ��http://en.wikipedia.org/wiki/Mozilla_Foundation#Financing�

� � HYPERLINK "http://www.infoworld.com/d/application-development/java-remains-most-popular-language-thanks-android-178469-0" ��http://www.infoworld.com/d/application-development/java-remains-most-popular-language-thanks-android-178469-0�

� “NoSQL Market Forecast 2013-2018” - � HYPERLINK "http://www.marketresearchmedia.com/?p=568" ��http://www.marketresearchmedia.com/?p=568�

� “NoSQL Market Forecast 2013-2018” - � HYPERLINK "http://www.marketresearchmedia.com/?p=568" ��http://www.marketresearchmedia.com/?p=568�

� “NoSQL Market Forecast 2013-2018” - � HYPERLINK "http://www.marketresearchmedia.com/?p=568" ��http://www.marketresearchmedia.com/?p=568�

� From the talk, “NoNoSQL@Google,” by Olaf Bachmann from the conference: “2012 NoSQL Matters – Barcelona.” � HYPERLINK "http://2012.nosql-matters.org/cgn/slides/#olaf_bachmann" ��http://2012.nosql-matters.org/cgn/slides/#olaf_bachmann�

PAGE
5

[image: image11.png]_1430318895.xls
OVERVIEW

				Hierarchy 5-Year Income Projection		Prepared by Peter Joh,

				for 2013-2018		Founder of Project Hierarchy

						Created on: April 22, 2013

				Overview

				In this document, we give our income projections for Hierarchy over the next 5 years. Our model for our income-projections are built off of our previous document, the "Hierarchy Sales Forecast," so If you haven't already done so, please look over this document first before looking through this one!

In fact, to read the next section on methodology, we assume you've already read the methodology section found in the sales forecast doc.

				Methodology - Software Licenses

				For our 5-year income projections, we started with our Sales Forecasts. Specifically, for the first table of forecasts on Software Licenses Sales-Forecast, we added in some new columns at the end; one for the amount of expenses spent to create our software for that year, Cost-of-Goods for Year, and another for Gross-Profit for Year (revenue - cost of goods). Refer to the first table on the next page to see these columns.

For the Cost-of-Goods for Year column, the main idea in how we calculated it is: for the first year of development, we have a relatively, accurate prediction of how much work it will take to develop the software, this is found in the Hierarchy Development Plan. This document contains a detailed breakdown of the tasks required to build the software. From this breakdown of the tasks, we can calculate the number of man-hours of work it would take, and from the number of man-hours, we can estimate the number of workers we'll need. Lastly, since the work performed by these workers is most of the expense needed to create the software, we can fairly accurately estimate the amount of money we'll need to spend on the first year based on how much we plan to pay them and what resources we'll need to give them.

				For the Gross-Profit for Year column - we can calculate the Gross-Profit for the year by subtracting the revenue we came up with in the Hierarchy Sales-Forecast document with the estimate for yearly expenses (Cost-of-Goods for Year).

				Methodology - Support & Services

				To determine the Cost-of-Goods for Year for support & services, we used IBM's gross margin for their support & services for our own. Although IBM is a huge corporation while we are only a startup, IBM's services gross margin is still a reasonable model for us. The reason is because the main cost of consulting services is the cost of paying the consultant, and, importantly, this means the ratio we'll use for 'billing rate vs. the consultant's pay rate' will be very similar to IBM's. Therefore, we can expect roughly the same gross margins for this business segment.

Standard Forecast

		Hierarchy 5-Year Income Projection

		for 2013-2018

		Description: This document estimates the revenue Hierarchy will generate each year, and also the projected income as well.

				The amount of sales is based on the size of the Java developer market, which has been estimated at 9 million by Oracle.

				For this standard forecast, we set our initial market-share in 2014-15 to be:

				Share of all users (both free & paid)				0.8%		(cell C23)

				Share of paid users				0.008%		(cell C23 x cell E23)

				Also, for this standard forecast, we assume that for the first three or four years, we'll experience exponential growth by factor of 2

				(see the Market Share at Year's End column).

				Lastly, this forecast includes 3 segments of our business as well as a forecast summary. Please scroll the page down

				to see the forecasts for each segment.

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year		Cost of Goods for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																												$0		$1,260,000		($1,260,000)

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		0.8%		72,000		1.0%		720		$1,000		$720,000																		$720,000		$1,680,000		($960,000)

		2015-2016		Release 2 (2015):
 - Enterprise Edition		1.5%		135,000		0.75%		1,013		$2,000		$2,025,000		0.80%		1,080		$3,000		$3,240,000										$5,265,000		$2,980,000		$2,285,000

		2016-2017		Release 3 (2016):
 - Big Data Edition		3.0%		270,000		0.75%		2,025		$2,000		$4,050,000		0.80%		2,160		$4,000		$8,640,000		0.7%		1,890		$3,000		$5,670,000		$18,360,000		$7,380,000		$10,980,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		6.0%		540,000		0.75%		4,050		$2,000		$8,100,000		0.80%		4,320		$4,000		$17,280,000		0.7%		3,780		$4,000		$15,120,000		$40,500,000		$7,380,000		$33,120,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.01% out of the total Java users base (which results in the

										900 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)										Services
Creating custom software and big-data solutions										TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Share of Users		Num of Users		Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Total Revenue for Year		Cost of Goods for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																								$0		$0		$0

		2014-2015		Release 1 (2014):
 - Community Edition		0.8%		72,000		2.0%		1,440		$500		$720,000		$266,400		0.05%		36		$50,000		$1,800,000		$666,000		$2,520,000		$1,587,600		$932,400

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		1.5%		135,000		2.0%		2,700		$500		$1,350,000		$499,500		0.05%		68		$50,000		$3,375,000		$1,248,750		$4,725,000		$2,976,750		$1,748,250

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		3.0%		270,000		2.0%		5,400		$500		$2,700,000		$999,000		0.05%		135		$50,000		$6,750,000		$2,497,500		$9,450,000		$5,953,500		$3,496,500

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		6.0%		540,000		2.0%		10,800		$500		$5,400,000		$1,998,000		0.05%		270		$50,000		$13,500,000		$4,995,000		$18,900,000		$11,907,000		$6,993,000

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$1,000,000

		2016-2017		Release 3 (2016):		$1,000,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$15,000,000

		Total Forecasted Revenue & Profit by Year

		Dev Cycle Year		Total Annual Revenue		Operating Expenses		Total Annual Expenses		Total Annual Gross-Profit		Total Annual Profit
(before taxes)

		2013-2014		$0		$140,000		$1,400,000		($1,260,000)		($1,400,000)

		2014-2015		$3,240,000		$200,000		$3,467,600		($27,600)		($227,600)

		2015-2016		$10,990,000		$300,000		$6,256,750		$5,033,250		$4,733,250

		2016-2017		$28,810,000		$400,000		$13,733,500		$15,476,500		$15,076,500

		2017-2018		$74,400,000		$400,000		$19,687,000		$55,113,000		$54,713,000

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

This num taken from "Development Plan - Workbreakdown" on Financial Need's page: employee costs + biz-dev costs as these are bulk of expenses

Adding 3 employees, which adds about $360K + increase marketing & biz dev buget by $60k

Add 10 employees (for a total of 23) - $1.2 Million
& increase marketing & biz dev budget by $100K

Add 20 employees (for a total of 43) for a total of $2.4 million
Increase Biz Dev budget by another $2 million

This figure is taken from "Development Plan - Workbreakdown" on Financial Need's page: Other expenses

Standard Forecast

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

Total Annual Revenue

Total Annual Expenses

Total Annual Profit
(before taxes)

Best-Case Forecast

		Hierarchy Sales-Forecast & 5-Year Income Projection

		for 2013-2018 - BEST CASE

		Description: This document estimates the revenue Hierarchy will generate each year, and also the projected income as well.

				For this best-cast forecast, we set our expected initial market share to be 6 times that of the standard forecast,

				so specifically, what this means is at the end of second year (in 2014-15), we expect:

				Share of all users (both free & paid)				5.0%		(cell C19)

				Share of paid users				0.050%		(cell C19 * cell E19)

				Also, for this best-case, we assume exponential growth by a factor of 2 (see the Market Share at Year's End column).

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year		Cost of Goods for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																												$0		$1,260,000		($1,260,000)

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		5.0%		450,000		1.0%		4,500		$1,000		$4,500,000																		$4,500,000		$1,680,000		$2,820,000

		2015-2016		Release 2 (2015):
 - Enterprise Edition		10.0%		900,000		0.75%		6,750		$2,000		$13,500,000		0.80%		7,200		$3,000		$21,600,000										$35,100,000		$2,980,000		$32,120,000

		2016-2017		Release 3 (2016):
 - Big Data Edition		20.0%		1,800,000		0.75%		13,500		$2,000		$27,000,000		0.80%		14,400		$4,000		$57,600,000		0.7%		12,600		$3,000		$37,800,000		$122,400,000		$7,380,000		$115,020,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		40.0%		3,600,000		0.75%		27,000		$2,000		$54,000,000		0.80%		28,800		$4,000		$115,200,000		0.7%		25,200		$4,000		$100,800,000		$270,000,000		$7,380,000		$262,620,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.05% out of the total Java users base (which results in the

										4,500 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)										Services
Creating custom software and big-data solutions										TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Share of Users		Num of Users		Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Total Revenue for Year		Cost of Goods for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																								$0		$0		$0

		2014-2015		Release 1 (2014):
 - Community Edition		5.0%		450,000		2.0%		9,000		$500		$4,500,000		$1,665,000		0.05%		225		$50,000		$11,250,000		$4,162,500		$15,750,000		$9,922,500		$5,827,500

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		10.0%		900,000		2.0%		18,000		$500		$9,000,000		$3,330,000		0.05%		450		$50,000		$22,500,000		$8,325,000		$31,500,000		$19,845,000		$11,655,000

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		20.0%		1,800,000		2.0%		36,000		$500		$18,000,000		$6,660,000		0.05%		900		$50,000		$45,000,000		$16,650,000		$63,000,000		$39,690,000		$23,310,000

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		40.0%		3,600,000		2.0%		72,000		$500		$36,000,000		$13,320,000		0.05%		1,800		$50,000		$90,000,000		$33,300,000		$126,000,000		$79,380,000		$46,620,000

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$1,000,000

		2016-2017		Release 3 (2016):		$1,000,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$150,000,000

		Total Forecasted Revenue & Profit by Year

		Dev Cycle Year		Total Annual Revenue		Operating Expenses		Total Annual Expenses		Total Annual Gross-Profit		Total Annual Profit
(before taxes)

		2013-2014		$0		$140,000		$1,400,000		($1,260,000)		($1,400,000)

		2014-2015		$20,250,000		$200,000		$11,802,500		$8,647,500		$8,447,500

		2015-2016		$67,600,000		$300,000		$23,125,000		$44,775,000		$44,475,000

		2016-2017		$186,400,000		$400,000		$47,470,000		$139,330,000		$138,930,000

		2017-2018		$546,000,000		$400,000		$87,160,000		$459,240,000		$458,840,000

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

This num taken from "Development Plan - Workbreakdown" on Financial Need's page: employee costs + biz-dev costs as these are bulk of expenses

Adding 3 employees, which adds about $360K + increase marketing & biz dev buget by $60k

Add 10 employees (for a total of 23) - $1.2 Million
& increase marketing & biz dev budget by $100K

This figure is taken from "Development Plan - Workbreakdown" on Financial Need's page: Other expenses

Best-Case Forecast

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

Total Annual Revenue

Total Annual Expenses

Total Annual Profit
(before taxes)

Worst-Case Forecast

		Hierarchy 5-Year Sales-Forecast & Income Projection

		for 2013-2018 - WORST CASE

		Description: This document estimates the revenue Hierarchy will generate each year, and also the projected income as well.

				For this worst-cast forecast, we set our expected initial market share to be one-forth of that in the standard forecast,

				so specifically, what this means is that at the end of second year (in 2014-15), we expect:

				Share of all users (both free & paid)				0.2%		(cell C19)

				Share of paid users				0.002%		(cell C19 * cell E19)

				Also, for this worst-case, we assume linear-growth instead of exponential (see the Market Share at Year's End column).

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year		Gross Expenses for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																												$0		$1,260,000		($1,260,000)

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		0.2%		18,000		1.0%		180		$1,000		$180,000																		$180,000		$1,260,000		($1,500,000)

		2015-2016		Release 2 (2015):
 - Enterprise Edition		0.4%		36,000		0.75%		270		$2,000		$540,000		0.80%		288		$3,000		$864,000										$1,404,000		$1,680,000		($276,000)

		2016-2017		Release 3 (2016):
 - Big Data Edition		0.6%		54,000		0.75%		405		$2,000		$810,000		0.80%		432		$4,000		$1,728,000		0.7%		378		$3,000		$1,134,000		$3,672,000		$1,680,000		$1,992,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		0.8%		72,000		0.75%		540		$2,000		$1,080,000		0.80%		576		$4,000		$2,304,000		0.7%		504		$4,000		$2,016,000		$5,400,000		$2,980,000		$2,420,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.002% out of the total Java users base (which results in the

										180 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)										Services
Creating custom software and big-data solutions										TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Share of Users		Num of Users		Cost / User		Revenue		Gross Profit
(using *2 for gross margin)		Total Revenue for Year		Gross Expenses for Year		Gross Profit for Year

		2013-2014		1 year of development		0%																								$0		$0		$0

		2014-2015		Release 1 (2014):
 - Community Edition		0.2%		18,000		2.0%		360		$500		$180,000		$66,600		0.05%		9		$50,000		$450,000		$166,500		$630,000		$396,900		$233,100

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		0.4%		36,000		2.0%		720		$500		$360,000		$133,200		0.05%		18		$50,000		$900,000		$333,000		$1,260,000		$793,800		$466,200

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		0.6%		54,000		2.0%		1,080		$500		$540,000		$199,800		0.05%		27		$50,000		$1,350,000		$499,500		$1,890,000		$1,190,700		$699,300

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		0.8%		72,000		2.0%		1,440		$500		$720,000		$266,400		0.05%		36		$50,000		$1,800,000		$666,000		$2,520,000		$1,587,600		$932,400

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$0

		2016-2017		Release 3 (2016):		$100,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$100,000

		Total Forecasted Revenue & Profit by Year

		Dev Cycle Year		Total Annual Revenue		Operating Expenses		Total Annual Expenses		Total Annual Gross-Profit		Total Annual Profit
(before taxes)

		2013-2014		$0		$140,000		$1,400,000		($1,260,000)		($1,400,000)

		2014-2015		$810,000		$200,000		$2,276,900		($1,266,900)		($1,466,900)

		2015-2016		$2,664,000		$300,000		$2,773,800		$190,200		($109,800)

		2016-2017		$5,662,000		$400,000		$3,270,700		$2,791,300		$2,391,300

		2017-2018		$8,020,000		$400,000		$4,967,600		$3,452,400		$3,052,400

Add 20 employees (for a total of 43) for a total of $2.4 million
Increase Biz Dev budget by another $2 million

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

Adding 3 employees, which adds about $360K + increase marketing & biz dev buget by $60k

This num taken from "Development Plan - Workbreakdown" on Financial Need's page: employee costs + biz-dev costs as these are bulk of expenses

This figure is taken from "Development Plan - Workbreakdown" on Financial Need's page: Other expenses

Worst-Case Forecast

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

Total Annual Revenue

Total Annual Expenses

Total Annual Profit
(before taxes)

Add 10 employees (for a total of 23) - $1.2 Million
& increase marketing & biz dev budget by $100K

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

_1430318927.xls
OVERVIEW

				Hierarchy 5-Year Sales-Forecast		Prepared by Peter Joh,

				for 2013-2018		Founder of Project Hierarchy

						Created on: April 22, 2013

				Overview

				This document estimates the revenue Hierarchy will generate for the next five years, and also the projected income as well. This first page of this document will discuss the methodology we used to create our forecasts, and the support for why we think it's a valid technique for forecasting future Hierarchy sales.

				Methodology

				To create this forecast of future sales, we start by taking the size of Java developer market (9 million) and then estimate what share of this market we'll obtain. But, as Hierarchy will offer both a paid and free version, this initial, market-share estimate counts both paid & free users. This value can be found in the Num of Total Users column. Then, from this total market share, we take another, small percentage on top of this. This new, smaller percentage will be our paid customers (Num of Users column).

				So, for instance, if we estimate that in 2014, we'll have 2% of all Java developers using our product (180k devs), then from this number, we can take another percentage of these as an estimate for paid users. So, for the 1,800k of total devs, we can estimate that only 1% will be using the paid version, which results in 1,800 paying devs. That means overall, only 0.02% of all Java users will be using the paid version.

				The reason we use this method of taking the product of two percentages to determine our market share is because it's much easier to estimate the total number of all users that use a developer tool than it is just the paid users. And, once we have this total market share, we can then use MySQL's lead-conversion ratio as the basis for this second percentage. MySQL converts roughly 1 out of 100 leads into a paid customer (from the article, "How MySQL solved their Sales & Marketing challenges," http://www.forentrepreneurs.com/mysql-story/). We can consider each download of Hierarchy as a lead. The reason we can assume this is that for each download, we'll get the user's email address and contact info. And from this list of contact info, using the conversion ratio, we can also assume that we'll convert 1% of these to paid users.

				Also note that even though MySQL is a database and Hierarchy is a developer tool, we think MySQL is a good model on which to base the general financial and product structure of our own company. This is because both companies are open source (actually, in Hierarchy's case, we still have not determined if we'll be open source, or just offer a free version of our software), and because both provide products for the database market.

				Here's our product offerings:
 o Community Edition - Free
 o Standard Edition - $2000 - The community edition with 24/7 support
 o Enterprise Edition - $4000 - Adds enterprise class features like monitoring, distributed caching, high availability...
 o Big Data Extension - $4000 - This package is bought as an extension to the different editions and adds
 big data features such as: Hadoop support, a Big Data query manager, a Big Data batch processor,
 Big Data analysis libs...

				NOTE: One edition that we will include in a future version of this forecast is a Clustering Edition for $10,000. This edition will include support for working with clustered and virtualized servers. It will include features such as Cache Replication to allow new instance of an application to be spun up on to virtualized servers quickly and Shared Cache to allow virtual servers to share a cache.

				NOTE: One extension that we will include in future versions of this forecast is Frictionless Hierarchical-Storage. This feature allows Hierarchical Storage to quickly be added to any persistent matrix. We may offer a limited version of this in all editions, and a more advanced version that is paid for.

Standard Forecast

		Hierarchy 5-Year Sales-Forecast

		for 2013-2018

		Description: This document estimates the revenue Hierarchy will generate each year.

				The amount of sales is based on the size of the Java developer market, which has been estimated at 9 million by Oracle.

				For this standard forecast, we set our initial market-share in 2014-15 to be:

				Share of all users (both free & paid)				0.8%		(cell C23)

				Share of paid users				0.008%		(cell C23 x cell E23)

				Also, for this standard forecast, we assume that for the first three or four years, we'll experience exponential growth by factor of 2

				(see the Market Share at Year's End column).

				Lastly, this forecast includes 3 segments of our business as well as a forecast summary. Please scroll the page down

				to see the forecasts for each segment.

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																												$0

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		0.8%		72,000		1.0%		720		$1,000		$720,000																		$720,000

		2015-2016		Release 2 (2015):
 - Enterprise Edition		1.5%		135,000		0.75%		1,013		$2,000		$2,025,000		0.80%		1,080		$3,000		$3,240,000										$5,265,000

		2016-2017		Release 3 (2016):
 - Big Data Edition		3.0%		270,000		0.75%		2,025		$2,000		$4,050,000		0.80%		2,160		$4,000		$8,640,000		0.7%		1,890		$3,000		$5,670,000		$18,360,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		6.0%		540,000		0.75%		4,050		$2,000		$8,100,000		0.80%		4,320		$4,000		$17,280,000		0.7%		3,780		$4,000		$15,120,000		$40,500,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.01% out of the total Java users base (which results in the

										900 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)								Services
Creating custom software and big-data solutions								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Share of Users		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																				$0

		2014-2015		Release 1 (2014):
 - Community Edition		0.8%		72,000		2.0%		1,440		$500		$720,000		0.05%		36		$50,000		$1,800,000		$2,520,000

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		1.5%		135,000		2.0%		2,700		$500		$1,350,000		0.05%		68		$50,000		$3,375,000		$4,725,000

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		3.0%		270,000		2.0%		5,400		$500		$2,700,000		0.05%		135		$50,000		$6,750,000		$9,450,000

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		6.0%		540,000		2.0%		10,800		$500		$5,400,000		0.05%		270		$50,000		$13,500,000		$18,900,000

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$1,000,000

		2016-2017		Release 3 (2016):		$1,000,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$15,000,000

		Total Forecasted Revenue

		Dev Cycle Year		Total Annual Revenue

		2013-2014		$0

		2014-2015		$3,240,000

		2015-2016		$10,990,000

		2016-2017		$28,810,000

		2017-2018		$74,400,000

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

Standard Forecast

		

Total Annual Revenue

Best-Case Forecast

		Hierarchy 5-Year Sales-Forecast

		for 2013-2018 - BEST CASE

		Description: This document estimates the revenue Hierarchy will generate each year.

				For this best-cast forecast, we set our expected initial market share to be 6 times that of the standard forecast,

				so specifically, what this means is at the end of second year (in 2014-15), we expect:

				Share of all users (both free & paid)				5.0%		(cell C23)

				Share of paid users				0.050%		(cell C23 x cell E23)

				Also, for this standard forecast, we assume that for the first three or four years, we'll experience exponential growth by factor of 2

				(see the Market Share at Year's End column).

				Lastly, this forecast includes 3 segments of our business as well as a forecast summary. Please scroll the page down

				to see the forecasts for each segment.

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																												$0

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		5.0%		450,000		1.0%		4,500		$1,000		$4,500,000																		$4,500,000

		2015-2016		Release 2 (2015):
 - Enterprise Edition		10.0%		900,000		0.75%		6,750		$2,000		$13,500,000		0.80%		7,200		$3,000		$21,600,000										$35,100,000

		2016-2017		Release 3 (2016):
 - Big Data Edition		20.0%		1,800,000		0.75%		13,500		$2,000		$27,000,000		0.80%		14,400		$4,000		$57,600,000		0.7%		12,600		$3,000		$37,800,000		$122,400,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		40.0%		3,600,000		0.75%		27,000		$2,000		$54,000,000		0.80%		28,800		$4,000		$115,200,000		0.7%		25,200		$4,000		$100,800,000		$270,000,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.01% out of the total Java users base (which results in the

										900 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)								Services
Creating custom software and big-data solutions								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Share of Users		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																				$0

		2014-2015		Release 1 (2014):
 - Community Edition		5.0%		450,000		2.0%		9,000		$500		$4,500,000		0.05%		225		$50,000		$11,250,000		$15,750,000

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		10.0%		900,000		2.0%		18,000		$500		$9,000,000		0.05%		450		$50,000		$22,500,000		$31,500,000

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		20.0%		1,800,000		2.0%		36,000		$500		$18,000,000		0.05%		900		$50,000		$45,000,000		$63,000,000

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		40.0%		3,600,000		2.0%		72,000		$500		$36,000,000		0.05%		1,800		$50,000		$90,000,000		$126,000,000

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$1,000,000

		2016-2017		Release 3 (2016):		$1,000,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$150,000,000

		Total Forecasted Revenue

		Dev Cycle Year		Total Annual Revenue

		2013-2014		$0

		2014-2015		$20,250,000

		2015-2016		$67,600,000

		2016-2017		$186,400,000

		2017-2018		$546,000,000

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

Best-Case Forecast

		

Total Annual Revenue

Worst-Case Forecast

		Hierarchy 5-Year Sales-Forecast

		for 2013-2018 - WORST CASE

		Description: This document estimates the revenue Hierarchy will generate each year.

				For this worst-cast forecast, we set our expected initial market share to be one-forth of that in the standard forecast,

				so specifically, what this means is that at the end of second year (in 2014-15), we expect:

				Share of all users (both free & paid)				0.2%		(cell C23)

				Share of paid users				0.002%		(cell C23 x cell E23)

				Also, for this standard forecast, we assume that for the first three or four years, we'll experience exponential growth by factor of 2

				(see the Market Share at Year's End column).

				Lastly, this forecast includes 3 segments of our business as well as a forecast summary. Please scroll the page down

				to see the forecasts for each segment.

				Number of Java Developers:		9,000,000

		Software-Licenses Sales-Forecast								Revenue Streams

										Standard License
(1 yr Subscription)								Enterprise License
(1 yr Subscription)								Big-Data Extension
(1 yr Subscription)								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Share of Users*1		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																												$0

		2014-2015		Release 1 (2014):
 - Community Edition
 - Standard Edition		0.2%		18,000		1.0%		180		$1,000		$180,000																		$180,000

		2015-2016		Release 2 (2015):
 - Enterprise Edition		0.4%		36,000		0.75%		270		$2,000		$540,000		0.80%		288		$3,000		$864,000										$1,404,000

		2016-2017		Release 3 (2016):
 - Big Data Edition		0.6%		54,000		0.75%		405		$2,000		$810,000		0.80%		432		$4,000		$1,728,000		0.7%		378		$3,000		$1,134,000		$3,672,000

		2017-2018		Release 4 (2017):
 - New Features
 - PLUS, Hierarchy for
 other languages (sales
 for other langauges not
 included in estimates)		0.8%		72,000		0.75%		540		$2,000		$1,080,000		0.80%		576		$4,000		$2,304,000		0.7%		504		$4,000		$2,016,000		$5,400,000

										*1 Note that the Share of Users is taking a percentage of users out of another percentage, the Market Share at Year's End.

										What this means is for the for our paid users in 2014-15, we plan on only having 0.01% out of the total Java users base (which results in the

										900 users as seen in the chart).

		Support & Services Sales-Forecast

		*NOTE: Support & Services requires hiring more personnel that has not been accounted for in any previous employee estimates.

		But, the salaries of these support & services employees are accounted for in the Gross Profit of this table.

										Revenue Streams

										Support
(per incident - not covered by subscriptions)								Services
Creating custom software and big-data solutions								TOTALS:

		Dev Cycle Year		Release Description		Market Share at Year's End
(free & paid)		Num of Total Users		Share of Users		Num of Users		Average Cost / User		Revenue		Share of Users		Num of Users		Cost / User		Revenue		Total Revenue for Year

		2013-2014		1 year of development		0%																				$0

		2014-2015		Release 1 (2014):
 - Community Edition		0.2%		18,000		2.0%		360		$500		$180,000		0.05%		9		$50,000		$450,000		$630,000

		2015-2016		Release 2 (2015):
 New Features:
 - Standard Edition
 - Enterprise Edition		0.4%		36,000		2.0%		720		$500		$360,000		0.05%		18		$50,000		$900,000		$1,260,000

		2016-2017		Release 3 (2016):
 New Features:
 - Big Data Edition		0.6%		54,000		2.0%		1,080		$500		$540,000		0.05%		27		$50,000		$1,350,000		$1,890,000

		2017-2018		Release 4 (2017):
 New Features:
 - Enhancements to all
 releases		0.8%		72,000		2.0%		1,440		$500		$720,000		0.05%		36		$50,000		$1,800,000		$2,520,000

										*2 Using a gross margin of 37%, based on industry averages for services as taken from Oracle & IBM

										Gross Margin		37%

		Default-Database Sales-Forecast:

		This is the estimated sales for providing a NoSQL-database company the service of being the default, installed database for Hierarchy.

		This is typically a contract created by Hierarchy with the DB vendor for a certain number of years (for example, 2 to 4 years)

		Dev Cycle Year		Release Description		Annual Fee

		2013-2014		1 year of development		$0

		2014-2015		Release 1 (2014):
We have no users at this point, so have no leverage to negotiate a contract.		$0

		2015-2016		Release 2 (2015):
Find an intial database vendor to serve as the default database for Hierarchy. Sign a two year contract.		$0

		2016-2017		Release 3 (2016):		$100,000

		2017-2018		Release 4 (2017):
At this point, will have enough users to write a new, longer term contract with a database vendor		$100,000

		Total Forecasted Revenue

		Dev Cycle Year		Total Annual Revenue

		2013-2014		$0

		2014-2015		$810,000

		2015-2016		$2,664,000

		2016-2017		$5,662,000

		2017-2018		$8,020,000

Let users know this is a special, new-edition price, and will increase in a year to $2K

Let users know this is a special, new-edition price that will increase to $4k after a year

Let users know this is a special, new-edition price, and will increase in a year to $4K

Note that at this point, we reduce market share of the standard licenses, as some of these users will be drawn to the enterprise license

Worst-Case Forecast

		

Total Annual Revenue

_1429015705.xls
Guide

		

				DISCOUNTED CASH FLOW

				A dollar received today is better than a dollar received a year from now. This discounted cash flow workbook will allow you to evaluate the present value of future cash at your desired discounted rate.		Discounting rate is the level of return an investor desires from investments. The selection of discounting rate is the desired risk rate of return a person is willing to accept in order to receive given amount of cash at a future date for a dollar invested today. The determining of discount rate can be benchmarked with risk free rate plus inflation rate. Risk free rate is the treasury bills market rate which is referred as risk free rate because it is government back investment, the inflation is added to adjust the effect of eroding future purchase value of the dollar. An alternative in determining the selection discounting rate is applying the rate of return of similar alternative available projects.

						Weighted cost of capital is widely used as the discounting rate. Discount cash flow adjust estimates the amount to be received from investments adjusted for the time value of money. The purpose is to analysis the attractiveness of investments using weighted cost of capital, weighted cost of capital is the average cost for the total capital of a company. Weighted average cost of capital is usually applied by companies.

						The cash inflow cannot be evaluated for infinity and instead terminal values are used. This is because the infinity cash inflows are not easy to estimate. Although discounted cash inflow is a strong tool for evaluating projects, it suffers shortfalls of garbage in garbage out. A small change in cash flows can result into a distorted valuation of the project.

						The discounted cash flow template allows the users to plug in cash in flow and select the desired discounting rate. For the purpose of evaluating business where the variable and fixed cost can be determined, the template allows the user to plug in fixed cost and variable cost. The template calculates the net inflow, discounts the inflows and calculates the total present value of cash flows from beginning to the last low of keyed in data. If there are no expenses identified and the valuation is for the regular cash flow, the user should enter the data on cash inflow column and the template will perform the calculation.

						Discounted cash flows values the business worth today based on the value of the money it will generate in future. The analysis tries to generate what the business is worth today by discounting cash inflows at a required rate of return. Required rate of return is the rate of return a business owner expects to earn from investments.

MODEL

Model

		

				DISCOUNTED CASH FLOW												INITIAL OUTLAY/INVESTMENT				$3,300,000.00

																DISCOUNT RATE				42%

				FOR BUSINESS VALUATION/INVESTMENT														WACC		20%

				INCOME		EXPENSES								DISCOUNTED CASH FLOW

		Year		Cash Inflow		Fixed Cost		Variable Cost		Cash Outflow		Net Cash Inflow/Outflow		Present Value of Cash flow		Cumulative Present Value of Cash Inflow		Present Value		Net Present Value

		1		$0		$1,260,000.00		$140,000.00		$1,400,000.00		-$1,400,000.00		-$985,915.49		-$985,915.49		-$4,285,915.49		-$2,812,892.03

		2		$31,500,000		$18,690,000.00		$200,000.00		$18,890,000.00		$12,610,000.00		$6,253,719.50		$5,267,804.01		$1,967,804.01		$288,536.01

		3		$100,000,000		$50,320,000.00		$300,000.00		$50,620,000.00		$49,380,000.00		$17,245,907.50		$22,513,711.51		$19,213,711.51		$8,841,356.63

		4		$271,000,000		$100,560,000.00		$400,000.00		$100,960,000.00		$170,040,000.00		$41,821,318.31		$64,335,029.82		$61,035,029.82		$29,581,942.98

		5		$776,000,000		$195,240,000.00		$400,000.00		$195,640,000.00		$580,360,000.00		$100,520,756.91		$164,855,786.73		$161,555,786.73		$79,433,538.35

																$164,855,786.73		$161,555,786.73		$79,433,538.35

								Terminal Value		$3,971,676.92								Total Valuation		$83,405,215.27

																		Equity percent for investor		3.957%

Page &P of &N

GUIDE

_1429015850.xls
Guide

		

				DISCOUNTED CASH FLOW

				A dollar received today is better than a dollar received a year from now. This discounted cash flow workbook will allow you to evaluate the present value of future cash at your desired discounted rate.		Discounting rate is the level of return an investor desires from investments. The selection of discounting rate is the desired risk rate of return a person is willing to accept in order to receive given amount of cash at a future date for a dollar invested today. The determining of discount rate can be benchmarked with risk free rate plus inflation rate. Risk free rate is the treasury bills market rate which is referred as risk free rate because it is government back investment, the inflation is added to adjust the effect of eroding future purchase value of the dollar. An alternative in determining the selection discounting rate is applying the rate of return of similar alternative available projects.

						Weighted cost of capital is widely used as the discounting rate. Discount cash flow adjust estimates the amount to be received from investments adjusted for the time value of money. The purpose is to analysis the attractiveness of investments using weighted cost of capital, weighted cost of capital is the average cost for the total capital of a company. Weighted average cost of capital is usually applied by companies.

						The cash inflow cannot be evaluated for infinity and instead terminal values are used. This is because the infinity cash inflows are not easy to estimate. Although discounted cash inflow is a strong tool for evaluating projects, it suffers shortfalls of garbage in garbage out. A small change in cash flows can result into a distorted valuation of the project.

						The discounted cash flow template allows the users to plug in cash in flow and select the desired discounting rate. For the purpose of evaluating business where the variable and fixed cost can be determined, the template allows the user to plug in fixed cost and variable cost. The template calculates the net inflow, discounts the inflows and calculates the total present value of cash flows from beginning to the last low of keyed in data. If there are no expenses identified and the valuation is for the regular cash flow, the user should enter the data on cash inflow column and the template will perform the calculation.

						Discounted cash flows values the business worth today based on the value of the money it will generate in future. The analysis tries to generate what the business is worth today by discounting cash inflows at a required rate of return. Required rate of return is the rate of return a business owner expects to earn from investments.

MODEL

Model

		

				DISCOUNTED CASH FLOW												INITIAL OUTLAY/INVESTMENT				$3,300,000.00

																DISCOUNT RATE				21%

				FOR BUSINESS VALUATION/INVESTMENT														WACC		20%

				INCOME		EXPENSES								DISCOUNTED CASH FLOW

		Year		Cash Inflow		Fixed Cost		Variable Cost		Cash Outflow		Net Cash Inflow/Outflow		Present Value of Cash flow		Cumulative Present Value of Cash Inflow		Present Value		Net Present Value

		1		$0		$1,260,000.00		$140,000.00		$1,400,000.00		-$1,400,000.00		-$1,157,024.79		-$1,157,024.79		-$4,457,024.79		-$3,517,536.23

		2		$6,300,000		$5,082,000.00		$200,000.00		$5,282,000.00		$1,018,000.00		$695,307.70		-$461,717.10		-$3,761,717.10		-$3,042,631.72

		3		$20,800,000		$9,784,000.00		$300,000.00		$10,084,000.00		$10,716,000.00		$6,048,902.63		$5,587,185.54		$2,287,185.54		$1,088,850.17

		4		$55,000,000		$19,488,000.00		$400,000.00		$19,888,000.00		$35,112,000.00		$16,380,007.13		$21,967,192.67		$18,667,192.67		$12,276,615.44

		5		$135,200,000		$33,096,000.00		$400,000.00		$33,496,000.00		$101,704,000.00		$39,211,294.71		$61,178,487.38		$57,878,487.38		$39,058,457.33

																$61,178,487.38		$57,878,487.38		$39,058,457.33

								Terminal Value		$1,952,922.87								Total Valuation		$41,011,380.20

																		Equity percent for investor		8.047%

Page &P of &N

GUIDE

_1429015711.xls
Guide

		

				DISCOUNTED CASH FLOW

				A dollar received today is better than a dollar received a year from now. This discounted cash flow workbook will allow you to evaluate the present value of future cash at your desired discounted rate.		Discounting rate is the level of return an investor desires from investments. The selection of discounting rate is the desired risk rate of return a person is willing to accept in order to receive given amount of cash at a future date for a dollar invested today. The determining of discount rate can be benchmarked with risk free rate plus inflation rate. Risk free rate is the treasury bills market rate which is referred as risk free rate because it is government back investment, the inflation is added to adjust the effect of eroding future purchase value of the dollar. An alternative in determining the selection discounting rate is applying the rate of return of similar alternative available projects.

						Weighted cost of capital is widely used as the discounting rate. Discount cash flow adjust estimates the amount to be received from investments adjusted for the time value of money. The purpose is to analysis the attractiveness of investments using weighted cost of capital, weighted cost of capital is the average cost for the total capital of a company. Weighted average cost of capital is usually applied by companies.

						The cash inflow cannot be evaluated for infinity and instead terminal values are used. This is because the infinity cash inflows are not easy to estimate. Although discounted cash inflow is a strong tool for evaluating projects, it suffers shortfalls of garbage in garbage out. A small change in cash flows can result into a distorted valuation of the project.

						The discounted cash flow template allows the users to plug in cash in flow and select the desired discounting rate. For the purpose of evaluating business where the variable and fixed cost can be determined, the template allows the user to plug in fixed cost and variable cost. The template calculates the net inflow, discounts the inflows and calculates the total present value of cash flows from beginning to the last low of keyed in data. If there are no expenses identified and the valuation is for the regular cash flow, the user should enter the data on cash inflow column and the template will perform the calculation.

						Discounted cash flows values the business worth today based on the value of the money it will generate in future. The analysis tries to generate what the business is worth today by discounting cash inflows at a required rate of return. Required rate of return is the rate of return a business owner expects to earn from investments.

MODEL

Model

		

				DISCOUNTED CASH FLOW												INITIAL OUTLAY/INVESTMENT				$3,300,000.00

																DISCOUNT RATE				15%

				FOR BUSINESS VALUATION/INVESTMENT														WACC		20%

				INCOME		EXPENSES								DISCOUNTED CASH FLOW

		Year		Cash Inflow		Fixed Cost		Variable Cost		Cash Outflow		Net Cash Inflow/Outflow		Present Value of Cash flow		Cumulative Present Value of Cash Inflow		Present Value		Net Present Value

		1		$0.00		$1,260,000.00		$400,000.00		$1,660,000.00		-$1,660,000.00		-$1,443,478.26		-$1,443,478.26		-$4,743,478.26		-$3,961,042.16

		2		$1,260,000.00		$2,360,400.00		$200,000.00		$2,560,400.00		-$1,300,400.00		-$983,289.22		-$2,426,767.49		-$5,726,767.49		-$4,704,550.08

		3		$4,060,000		$1,676,800.00		$300,000.00		$1,976,800.00		$2,083,200.00		$1,369,737.82		-$1,057,029.67		-$4,357,029.67		-$3,668,831.51

		4		$10,900,000		$3,273,600.00		$400,000.00		$3,673,600.00		$7,226,400.00		$4,131,717.65		$3,074,687.98		-$225,312.02		-$544,659.37

		5		$23,240,000		$667,200.00		$400,000.00		$1,067,200.00		$22,172,800.00		$11,023,800.32		$14,098,488.30		$10,798,488.30		$7,790,917.43

																$14,098,488.30		$10,798,488.30		$7,790,917.43

								Terminal Value		$389,545.87								Total Valuation		$8,180,463.30

																		Equity percent for investor		40.340%

Page &P of &N

GUIDE

_1428851549.xls
SUMMARY

		

				Hierarchy Development Plan - Work Breakdown - Release 1:						prepared by:		Peter Joh,

				Summary								Founder of Project Hierarchy

										on:		4/22/13

				This first page summarizes the information found in rest of the pages of this document. More specifically, it summarizes the estimated amount of time and number of workers necessary to develop release 1 of Hierarchy.

				This first table summarizes the amount of developer time necessary to create release 1. It is broken down into the main types of work: the work on the metacompiler itself, work dealing with persistence, and work on secondary tools.

				Developer-Time Summary

				Component		Developer Time

				Metacompiler		6.2		months

				Database Persistence: Programmatic Persistence		3.8		months

				Database Persistence: NoSQL Persistence		32.0		months

				Secondary Tools: Eclipse support		11.4		months

				Secondary Tools: Netbeans support		4.1		months

				TOTAL		57.5		months

				This second table summarizes the development schedule, and our employee needs.

				Development-Plan Summary:

				Development-Time Summary

				Release one is broken into two iterations over a 1 year time period:

 o Iteration 1: Main Development (8 months)
 The bulk of the work takes place here.

 o Iteration 2: Beta Test (4 months)
 We begin Beta testing, BUT, in our experience, there is still a
 great deal of polish work and missing features to add,
 so expect nearly as intense a programming schedule for this
 iteration.

				Summary of Team Needs

				For release 1, we'll need:
 o 7 developers
 o 1 CEO (Peter Joh)
 o 1 Head of Business Strategy
 o 1 Head of Marketing
 Total: 10 people

We'll also have a part-time accountant and part-time lawyer, and may need a part-time recruiter.

				Development-Team Needs

				We'll need in total 7 developers for release 1.

This number is determined by taking the total number of work, 57 months, and dividing this by the length of iteration 1 in our development schedule, 8 months.

				We can further break this down by the type of developers we need:

				o Compiler developer - 1

				o DB Persistence developers - 4

				o Eclipse & Netbeans developers - 2

				Business-Development Team-Needs

				We need: 3 Business Dev people:
 o CEO
 This will be the founder, Peter Joh, who will actually do both
 programming & business work.
 o Business Strategist
 We need someone to determine the direction Hierarchy will take
 to find its business niche and direct what features we should
 pursue based on market trends.
 o Marketing Analyst & Media Engineer
 We believe greatly in great marketing, so we want to start
 creating an effective campaign early.

Metacompiler

				Hierarchy Development Plan - Work Breakdown - Release 1:

				Metacompiler										Total Days:		83		days

				This document describes the work task for developing the metacompiler.										Work multiplier		1.5

														Estimated Days:		124.5		days

				Task Name		Task Description		days		Priority
1-5				Estimated Months:		6.2		months

				Review code		Peter will probably do the development on this and has been during business tasks for quite sometime now, so needs to review code.		5		5

				Java 7 Grammar		updating Hierarchy to work with the java 7 grammar. There's an existing, sablecc java 7 grammar we can use		6		5

				Refactor, Document, and Comments		The code for the metacompiler is mainly the work of Peter, and needs to some polishing to make it easier for other devs to work on. This initial work will save other devs a lot of time in the future.		6		5

				Inner Classes + anonymous Classes		Hierarchy current doesn't support these. Probably not a lot of work as it seems, as regular classes are supported, and the main work is simply to add parser actions to the grammar.		7		5

				Readable Output + comments		The metacompiler needs to pass formatting and comments from the Hierarchy code to the meta code, so that it's readable.		3		5

				Metacode debugging		Need to link the compilation errors in the metacode that are generated by javac with the line number in the hierarchy code.

Research 1d, design 1d, Javac-Error output parser 2d, Comment Line-num Generator 2d, link Java-error to comment line and then generate output 1d, test 1d		8		5

				Generics		The metacompiler currently doesn't understand generics. We need to add this to the metacompiler. One problem is that generics are very complex, especially for a programming language features. It would take a lot of time to add this.

Research & learn 2d, design 3d, impl 13d, test 2d		20		4

				Metacompiler performance		The current performance of the meta compiler is pretty slow. We need to make it faster by doing performance profiling on it, and then fixing bottle necks. This could take a couple of days to a month to do. So, we'll say it takes 3 weeks		15		4

				Other bugs		misc		13

				Schema-less, Dynamically-Built matrices		Instead of using a schema, can dynamically build a matrix - similar to JSON. Should it also be a class behind the scenes??		X

Database Persistence

				Hierarchy Development Plan - Work Breakdown - Release 1:										TOTAL Work Estimate for DB Persistence:

				Database Persistence										TOTAL Estimated Months:		35.8		months

				This document describes the work task for developing the Persistence features.

				Task Name		Task Description		days		Priority
1-5				Programmatic Persistence Estimate:

				Programmatic Persistence:										Total Days:		50		days

				o Error Handling		Incomplete commands - 4d, bad commands and data 5d,		9		5				Work multiplier		1.5

				o Fault Tolerance		If systems goes down, can it restart where it left off? Also, what happens if network goes down for awhile and restarts? (meaning connection between matrix and persistence server dies)		8		5				Estimated Days:		75		days

				o Reliability		Self monitoring for problems. What happens when system overloaded? Can it handle it and stay up?		6		5				Estimated Months:		3.8		months

				o Better Persistence Manager		The startup process is very, "Rube-Goldberg"-like. Need to make it much easier to configure the startup process, and make it more reliable		10		5

				o Complex Java
 Objects		Support for serializing Java objects. May do this using a CodeSerializer helper method that can be defined for objects.		5		4				NoSQL DB Persistence Estimate:

														Total Days:		427		days

				o Multi-client support		this would be very useful. Need push-to-client, synchronization, plus better error handling

Design 3d, implement 6d, test 3d		12		5				Work multiplier		1.5

				o Transactions & Rollback		this would be nice to add to Programmatic Persistence. Lots & lots of work though.

NOT INCLUDED IN THIS RELEASE!		X		3				Estimated Days:		640.5		days

														Estimated Months:		32.0		months

				NoSQL DB Persistence

				NoSQL & SQL DB connector		This needs to be an engineered solution with a well defined interface so that other DB's can connect in.
BUT, need to create a quick connector too to let other devs work on their tasks.

req 20d, design 20d, impl + test 40d, doc 15d		95		5

				Matrix Access language/ Query pass through		This one needs the most research! It's very important. Most NoSQL DB's have their own query languages. We need to support either letting devs use the DB's query lang, and having it pass through, or using our access lang mixed with theirs for the annotated access filters (or both).		60		5

				DB Cache,		The design of the DB cache is going to be very complex. Because it requires real-life usage to design, great flexibility in its caching algorithm with the ability to swap out one for another, and also allowing devs to program the cache to preload specific queries at certain situations.
- can be added to Programmatic Persistence too

req 20d, design 20d, impl + test 40d, doc 10d		87		5

				Cursors		Instead of using OR used in conjunction with DB Cache. The client defines a window of data that it can view the db through. Good if you're scrolling through a large query. This might be great if used with the cache, because the cursor window can always be up to date.
- can be added to Programmatic Persistence too

Pre-conditions: cache already created
req 7d, design 7d, impl + test 20d, doc 4d
NOT INCLUDED IN THIS RELEASE!		X		4

				Matrices use Internal, In-memory, NoSQL server for information storage*		Instead of using Java data structures (or even custom ones we create), replace that all with an internal, in-memory, NoSQL DB. What this means is that all the information from a matrix is already stored in a NoSQL DB! There is no backend server running like in the current configuration!

requirements & design 30 d, impl 40 d, test 10d		X		4				The benefits of this is you get all the features and benefits of the in-memory DB immediately for your matrices. Your matrices can utilize all the NoSQL DB's fault tolerance, reliability, logging, query language, synchronization…

The downside of this is the in-memory DB will have extra overhead compared to Java data structures. And also, maybe you don't really need the in-memory matrices to have all these extra features. Still, this might be the future of Hierarchy!!!

				Polyglot persistence		Allow Hierarchy's matrices to combine data from multiple, NoSQL Databases. It can either combine the data directly into one matrix (or multiple matrices). Or, it can offload this to separate, NoSQL server that runs on the application server. This server is the cache.		90		4

				Frictionless Hierarchical Storage		For Frictionless Hierarchical Storage, need:
- Hierarchical Storage Manager that surveys the Cache, DB, and long-term storage for when it should move different info from one storage medium to another. Should we write our own? Or fork an existing, open-source one?

Guessing this will take about 90d to create		X		4

				* Universal Data Definition *		Universal Data definition is a very interesting technique that could change the way we program (for more info, see the Hierarchy Developer Guide. There is an entire chapter devoted to it)		95		4

				Cloud DB support		Create an adaptor so that instead of storing info to a DB that's apart of your network, allow it to connect to the cloud DB's.		X		4

				ORM features (not using cache)		Hierarchy should take over the role of ORM's too		X

				Simple push and pull		Hierarchy can also be used in a "Simple push and pull" mode. Where you use dynamically build matrices that are schema-less. This is good for fast development. This requires that dynamic matrices be added to the metacompiler, and also the "query pass-through" stuff.		X		4

				Android Support		should support android		X		4

				SQL DB Persistence

						The idea here is repurpose all the above for SQL DB's.		X

Secondary Tools

				Hierarchy Development Plan - Work Breakdown - Release 1:										Total Days:		152		days

				Secondary Tools										Work multiplier		1.5

				This document describes the work task for developing the secondary tools for Hierarchy.										Estimated Days:		228		days

														Estimated Months:		11.4		months

				* The 'Research' task is for learning the technologies necessary to implement the feature.
This task not be necessary if the dev is familiar with the technology

				Task Name		Task Description		days		Priority
1-5				Eclipse-IDE Support Estimate:

				Eclipse		We need to add Hierarchy into the Eclipse IDE.								Total Days:		97		days

				o Project Creation		Add the ability to create Hierarchy projects in Eclipse

Research* 2d, Req & Design 1d, Impl & test 5d, Doc 1d		9		5				Work multiplier		1.5

				o Pretty Printing		Will probably use the existing, Java one as a base.

Research* 2d, Req 2d, Design 2d, Impl & test 6d, doc 1d		13		5				Estimated Days:		145.5		days

				o Syntax Checking		Will probably use the existing, Java one as a base.

Research* 3d, Req 1d, Design 2d, Impl & test 12d, doc 1d		19		5				Estimated Months:		7.3		months

				o Java Doc		Will probably use the existing, Java one as a base.

Research* 1d, Req 1d Impl & test 3d		4		5

				o Code Navigation		Will probably use the existing, Java one as a base.

Research* 1d, Req 1d Impl & test 4d		5		5				Netbeans-IDE Support Estimate:

				o Debugger Support		Will probably use the existing, Java one as a base, but this is probably still very tough and hard to predict how long it could take. It could take a couple of weeks, or it could take months.

Needs research before we estimate! But will put in two months initially		?		?				Total Days:		55		days

				o Excel-like Spreadsheet editor		Develop an Excel-like spreadsheet editor for editing Hierarchy data.

Req 5d, Design 5d, impl + test 15d, doc 5d		30		4				Work multiplier		1.5

				o Excel-like Spreadsheet editor:
Runtime editing		Add the ability to edit matrices during runtime to the Excel-like editor.

Req 3d, Design 2d, impl + test 10d, doc 2d		17		4				Estimated Days:		82.5		days

														Estimated Months:		4.1		months

				Netbeans		We will try to create a core library that can hopefully be reused between Eclipse and Netbeans to speed up dev of the Netbeans features. And, we will develop the Netbeans stuff after developing the Eclipse stuff, so we can utilize what we learned from Eclipse on the Netbeans work.

				o Project Creation		Add the ability to create Hierarchy projects in Eclipse

Research* 2d, Req & Design 1d, Impl & test 2d, Doc 1d		6		5

				o Pretty Printing		Will probably use the existing, Java one as a base.

Research* 2d, Req 1d, Design 1d, Impl & test 3d, doc 1d		8		5

				o Syntax Checking		Will probably use the existing, Java one as a base.

Research* 2d, Req 1d, Design 1d, Impl & test 7d, doc 1d		12		5

				o Java Doc		Will probably use the existing, Java one as a base.

Research* 1d, Req 1d Impl & test 2d		3		5

				o Code Navigation		Will probably use the existing, Java one as a base.

Research* 1d, Req 1d Impl & test 2d		3		5

				o Debugger Support		Will probably use the existing, Java one as a base, but this is probably still very tough and hard to predict how long it could take. It could take a couple of weeks, or it could take months.

Needs research before we estimate! But will put in two months initially		?		?

				o Excel-like Spreadsheet editor		Develop an Excel-like spreadsheet editor for editing Hierarchy data.		15		4

				o Excel-like Spreadsheet editor:
Runtime editing		Add the ability to edit matrices during runtime to the Excel-like editor.		8		4

FINANCIAL NEEDS

				Project Hierarchy Financial-Needs for Release 1

				Description: This calculation for our financial needs is based on the amount of work need to develop release 1, which is calculated in the previous pages of this document. From the estimates on the amount of developers we need, we can estimate the amount of the expenses generated.

				For Release 1 (which is one year of development by 7 developers and 3 business people), the estimated cost will be:

				Expense		Amount

				Average Salary		$80,000

				"Employee Salary Multipler" to cover taxes, benefits, and equipment		1.5

				Number of Employees		10

				Total Cost for Employees		$1,200,000

				Marketing Budget		$30,000

				Business Development Budget		$30,000

				Total Business Expenses		$60,000

				Rent for 1 year		$50,000

				Part-time accountant		$20,000

				Legal		$50,000

				Miscellenous		$20,000

				Total Other Expenses		$140,000

				Total Expenses		$1,400,000

